Project

# Title Team Members TA Documents Sponsor
60 Automatic Ice Fishing Rod
Andrew Osepek
James Niewiarowski
Luke Boelke
Zicheng Ma design_document1.pdf
design_document2.pdf
final_paper1.pdf
presentation1.pdf
proposal1.pdf
proposal2.pdf
video1.mov
Team Members:
- James Niewiarowski (jcn3)
- Andrew Osepek (aosepek2)
- Luke Boelke (lboelke2)

# Problem

Ice fishing can be a very tedious and labor-intensive process. While it is being performed, the fisherman must dedicate all of their attention to the task at hand, constantly jigging the rod, making multitasking impossible. It must be done in a very cold environment as well, which gets uncomfortable after long periods of time. Additionally, there can be long stretches with little to no bites. If the fisherman did not have to constantly attend to the rod, these stretches of no activity would be perfect for taking a break to warm up, eat a meal, etc., but the nature of ice fishing makes this impossible.

# Solution

We plan to create an automated ice fishing rod that eases the challenges associated with ice fishing. The user will have the ability to spool any lb-test line onto the device as with any lure when fishing. The fisherman can set the depth at which his lure hangs below the ice. The fishing rod will have the ability to jig the attached lure in hopes of attracting fish. When a tug occurs at the line, the user will be alerted through an alarm and notification. A mobile app will allow the user to set preferences to the depth of the line and jigging.

# Solution Components

## Fishing Rod

The fishing rod component will consist of an ice fishing rod (short rod length) attached to a tripod stand, holding the rod upright and dangling the line above the water. The fishing reel will have a hand crank on one side that will allow the fisherman to reel in the fish on their own, and on the other side, a clamp, which is easy to remove/attach, will connect the spool to a DC motor to allow for automatic reeling.

## Microcontroller

An STM32 microcontroller will do the processing on the device itself. The microcontroller will have the ability to turn the fishing spool in both directions allowing the lure to be reeled-out or reeled-in through a DC motor. Bending strain gauges will be placed at the tip and middle of the fishing rod to measure the degree at which the rod bends, thus determining if a fish is on the line. A push-pull actuator placed at the bottom of the fishing rod will simulate a fisherman jigging their rod by moving the tip of the fishing rod up and down. If the stress at the tip of the rod exceeds normal, the jigging functionality will halt and notify the fisherman. The microcontroller has wireless communication capabilities. From the user application, the fisherman will be able to adjust the settings of the fishing device above from a remote application.

Equipment: STM32 microcontroller, Hemobllo Strain Gauge Bending Test Sensor, Electric 12V - 2" Actuator, 12V DC motor

## Power subsystem

We will have batteries connected together in series to have adequate charge. There will also be a circuit for the power supply that regulates the power output from the batteries. There will also be a switch on the system to shut off the power supply to prevent the batteries from draining too fast. We will also need a power distribution system that will supply different amounts of electricity to the sensors, motors, and control board. The power subsystem will be designed to maximize efficiency of electricity used and try to reduce energy loss.

## User Application

The user application will allow the user to modify the settings of the fishing device (e.g., depth of the lure, whether to automatically reel in) while also allowing the user to insert/remove catch information from their account. For example, when they make a catch, they can type in the time caught, location, depth of lure, type of fish, etc. into the app, where it will then be uploaded to a GCP database. This information can then be viewed within the app for future reference.

## GCP Database

A SQL relational database that records each user’s catches. Two tables would exist in the database that contain user information and their related catch information. Attributes of the catch table would include time caught, location, depth of lure, type of fish, length of fish, weight of fish, and other information. GCP provides new users with a $300 credit which is more than enough for us to use their service.

## Testing
We believe we can demonstrate the functionality of this device in a staircase, a balcony, or another elevated surface, avoiding the need to go on a frozen lake.

# Criterion For Success

Rod automatically jigs back and forth in a controlled manner when the user is absent
Rod is able to reel in and reel out automatically.
- User will be able to adjust fishing rod’s setting in application
- User is able to store the information of their catch in the application and view previous catches
- Application gets a notification when sensors detect rod bending
- Jigging halts when sensors detect rod bending

Covert Communication Device

Ahmad Abuisneineh, Srivardhan Sajja, Braeden Smith

Covert Communication Device

Featured Project

**Partners (seeking one additional partner)**: Braeden Smith (braeden2), Srivardhan Sajja (sajja3)

**Problem**: We imagine this product would have a primary use in military/law enforcement application -- especially in dangerous, high risk missions. During a house raid or other sensitive mission, maintaining a quiet profile and also having good situational awareness is essential. That mean's that normal two way radios can't work. And alternatives, like in-ear radios act as outside->in communication only and also reduce the ability to hear your surroundings.

**Solution**: We would provide a series of small pocketable devices with long battery that would use LoRa radios to provide a range of 1-5 miles. They would be rechargeable and have a single recessed soft-touch button that would allow someone to find it inside of pockets and tap it easily. The taps would be sent in real-time to all other devices, where they would be translated into silent but noticeable vibrations. (Every device can obviously TX/RX).

Essentially a team could use a set of predetermined signals or even morse code, to quickly and without loss of situational awareness communicate movements/instructions to others who are not within line-of-sight.

The following we would not consider part of the basic requirements for success, but additional goals if we are ahead of schedule:

We could also imagine a base-station which would allow someone using a computer to type simple text that would be sent out as morse code or other predetermined patterns. Additionally this base station would be able to record and monitor the traffic over the LoRa channels (including sender).

**Solutions Components**:

- **Charging and power systems**: the device would have a single USB-C/Microusb port that would connect to charging circuitry for the small Lithium-ion battery (150-500mAh). This USB port would also connect to the MCU. The subsystem would also be responsible to dropping the lion (3.7-4.2V to a stable 3.3V logic level). and providing power to the vibration motor.

- **RF Communications**: we would rely on externally produced RF transceivers that we would integrate into our PCB -- DLP-RFS1280, https://www.sparkfun.com/products/16871, https://www.adafruit.com/product/3073, .

-**Vibration**: We would have to research and source durable quiet, vibration motors that might even be adjustable in intensity

- **MCU**: We are likely to use the STM32 series of MCU's. We need it to communicate with the transceiver (probably SPI) and also control the vibration motor (by driving some transistor). The packets that we send would need to be encrypted (probably with AES). We would also need it to communicate to a host computer for programming via the same port.

- **Structural**: For this prototype, we'd imagine that a simple 3d printed case would be appropriate. We'd have to design something small and relatively ergonomic. We would have a single recessed location for the soft-touch button, that'd be easy to find by feel.

**Basic criterion for success:** We have at least two wireless devices that can reliably and quickly transfer button-presses to vibrations on the other device. It should operate at at *least* 1km LOS. It should be programmable + chargeable via USB. It should also be relatively compact in size and quiet to use.

**Additional Success Criterion:** we would have a separate, 3rd device that can stay permanently connected to a computer. It would provide some software that would be able to send and receive from the LoRa radio, especially ASCII -> morse code.