Equipment

Lab Equipment

The Srivastava Senior Design Lab has a wide selection of equipment that provides nearly all of the capabilities of the other ECE teaching labs in one place. Although the equipment may not be identical to that found in these other teaching labs, similar functionality is offered. Use the experience of learning new equipment as a way to expand your horizons. If you are using a piece of equipment for the first time, ask a TA for assistance, to make sure you understand how to safely use it. If the available equipment does not meet the needs of your project, talk to the course staff, and we will help you find what you need elsewhere on campus, consider purchasing it for the senior design lab (if it would be used by many groups), or brainstorm alternate ways to solve your problem.

Lab Kits

Each team is provided with at least one lockable storage drawer in the lab as well as a portable lab kit. An additional drawer and/or kit may be issued as need arises and facilities allow.

The lab kit includes a box with carrying handle and contains a wiring board for prototyping circuit projects, a multiple-output power supply, a digital multimeter, and a set of 8 cables (2 bnc/bnc, 2bnc/pin, 2 banana/banana, and 2 banana/pin). This is checked out to you by your TA at the beginning of the semester and must be returned undamaged at the end of the semester. Missing lab kits will result in an encumbrance or withheld diploma and a charge of $500.00, so always be sure to lock your lockers! Also, do not store any cables from the lab in your kit. Doing so will result in a loss of points.

Test Equipment

Most equipment is connected to the PCs via HPIB cables. Below is a sampling of the test equipment available:

Specific setups at the various lab benches can be in the listing at the bottom of this page.

Computers

The lab has PCs with enough processing power for the needs of nearly any senior design project. These machines are networked to a high-capacity laser printer (printing will count against your standard print quota). Each has an Ethernet connection to the campus network, an HPIB interface card connecting it to all of the standard instruments on its bench, and a sound card. The computers are maintained by Engineering IT, located in 3080 ECE Building.

The PCs are presently configured with the software shown here. Their primary uses include:

Test Equipment (Listed by lab bench)

 
Bench: A
Oscilloscope Rohde & Schwarz RTE 1054
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
 
Bench: B
Oscilloscope Agilent DSO7104B
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
 
Bench: C
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
Dual Output Power Supply Hewlett-Packard 6234A
 
Bench: D (Power)
Oscilloscope Agilent DSO-X 6004A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
Triple Output Power Supply Hewlett-Packard 6235A
Digital Power Analyzer Valhalla Scientific 2101
DC Power Supply Hewlett-Packard 6632A
DC Electronic Load Agilent 6060B
kW Power Supply Sorensen DCS 20-50
 
Bench: E
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
 
Bench: F
Oscilloscope and Logic Analyzer Teledyne LeCroy HDO 4054-MS
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
 
Bench: G (power)
Oscilloscope Agilent DSO-X 6004A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Triple Output Power Supply Hewlett-Packard 6235A
DC Power Supply Hewlett-Packard 6632A
DC Electronic Load Hewlett-Packard 6060B
Current Probe Amplifier Tektronix AM 503
 
Bench: H (RF)
Mixed Domain Oscilloscope Tektronix MDO4054B-3
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
S-Parameter Network Analyzer Hewlett-Packard 8753ES
S-Parameter Test Set Hewlett-Packard 85047A
Pulse Generator Hewlett-Packard 8011A
Signal Generator Hewlett-Packard 8657B
 
Bench: I
Oscilloscope Agilent DSO7104B
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
Dual Output Power Supply Hewlett-Packard 6234A
 
Bench: J (RF)
Oscilloscope Agilent DSO7104B
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Triple Output Power Supply Hewlett-Packard 6235A
DC Power Supply Hewlett-Packard 6632A
Network Analyzer Hewlett-Packard 8751A
S-Parameter Test Set Hewlett-Packard 87511A
 
Bench: K
Oscilloscope and Logic Analyzer Teledyne LeCroy HDO 4054-MS
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Dual Output Power Supply Hewlett-Packard 6234A
 
Bench: L (RF)
Mixed Domain Oscilloscope Tektronix MDO4054B-3
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Vector Signal Analyzer Agilent 89441A
RF Section Hewlett-Packard 89440A
Signal Generator Hewlett-Packard 8657B
Precision LCR Meter Hewlett-Packard 4284A
 
Bench: M
Oscilloscope Agilent DSO7104B
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
 
Bench: N
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
 
Bench: O
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series
Pulse Generator Hewlett-Packard 8011A
Triple Output Power Supply Hewlett-Packard 6235A
Communications Receiver AOR AR5000
 
Bench: P
Oscilloscope Agilent DSO-X 3034A
Digital Multimeter Keysight 34461A
Triple Output DC Power Supply Keysight E3631A
Waveform Generator Agilent 33500B Series

Electronic Automatic Transmission for Bicycle

Tianqi Liu, Ruijie Qi, Xingkai Zhou

Featured Project

Tianqi Liu(tliu51)

Ruijie Qi(rqi2)

Xingkai Zhou(xzhou40)

Sometimes bikers might not which gear is the optimal one to select. Bicycle changes gears by pulling or releasing a steel cable mechanically. We could potentially automate gear changing by hooking up a servo motor to the gear cable. We could calculate the optimal gear under current condition by using several sensors: two hall effect sensors, one sensing cadence from the paddle and the other one sensing the overall speed from the wheel, we could also use pressure sensors on the paddle to determine how hard the biker is paddling. With these sensors, it would be sufficient enough for use detect different terrains since the biker tend to go slower and pedal slower for uphill or go faster and pedal faster for downhill. With all these information from the sensors, we could definitely find out the optimal gear electronically. We plan to take care of the shifting of rear derailleur, if we have more time we may consider modifying the front as well.

Besides shifting automatically, we plan to add a manual mode to our project as well. With manual mode activated, the rider could override the automatic system and select the gear on its own.

We found out another group did electronic bicycle shifting in Spring 2016, but they didn't have a automatic function and didn't have the sensor set-up like ours. Commercially, both SRAM and SHIMANO have electronic shifting products, but these products integrate the servo motor inside the derailleurs, and they have a price tag over $1000. Only professionals or rich enthusiasts can have a hand on them. As our system could potentially serve as an add-on device to all bicycles with gears, it would be much cheaper.

Project Videos