Project

# Title Team Members TA Documents Sponsor
55 Rodent Deterrent and classification system
Jung Ki Lee
Mankeerat Sidhu
Rishab Vivekanandh
Angquan Yu design_document1.pdf
design_document2.pdf
final_paper1.pdf
photo1.jpg
photo2.jpg
presentation1.pdf
proposal2.pdf
proposal1.pdf
video
Team Members -

Mankeerat Sidhu,
Jung Ki Lee,
Rishab

Problem -

Every year, in late summer and fall, thousands and millions of backyards, lawns, golf courses and open grass fields suffer from rodents and birds digging the ground in search for earthworms, soil-dwelling insects, and insect larvae (grubs) ruining the grass and leaving behind large patches of loose turf. This is not only a huge problem for the grass farming industry but also for every backyard ruining the aesthetic pleasingness and plants grown on the lawn. The current deterrent methods are technologically naive including of just a motion sensor, lights and loud sounds which can leave the user unaware of the type of rodent affecting their lawn, loud noises at night and a deterrent that does not prevent lawn digging.

Solution -

We are proposing a rodent detection and deterrent system which comprises of many parts. Firstly using infrared and ultrasonic sensors on a rotating servo, we would detect for any rodent outside of the usual landscape of the lawn the device is placed in. The PI camera system would simultaneously work to take a clean shot of the rodent/bird and store it in the file system. If recognized to be a ground digging rodent, for the actual deterrent, our colored lights and localized speaker beeps would go in the direction of the rodent/bird rather than just in 1 direction like the previously commercialized methods. This would ensure rodent deterrent and also tell the user what type of animals are responsible for digging their lawn.


Criteria For Success -

To test for this method, we would set up our system on a surface and test using props of different types of animals. We need to showcase that the sensors can detect irregularity and movement outside of the known landscape, can take a photo of the rodent and then classify the rodent and then also on moving servos, send localized beeps and colored light beams towards the rodent to scare it away and realistically prevent it from digging the ground.

Equipment -

Arduino Uno,
Raspberry pi 4,
PIR sensor, Ultrasonic Sensor, PI camera module
L298N motor driver,
Servos,
Colored Light arrays,
Small speakers,
LCD display (radar showing interactive component),
Potentiometers and capacitors

Prosthetic Control Board

Caleb Albers, Daniel Lee

Prosthetic Control Board

Featured Project

Psyonic is a local start-up that has been working on a prosthetic arm with an impressive set of features as well as being affordable. The current iteration of the main hand board is functional, but has limitations in computational power as well as scalability. In lieu of this, Psyonic wishes to switch to a production-ready chip that is an improvement on the current micro controller by utilizing a more modern architecture. During this change a few new features would be added that would improve safety, allow for easier debugging, and fix some issues present in the current implementation. The board is also slated to communicate with several other boards found in the hand. Additionally we are looking at the possibility of improving the longevity of the product with methods such as conformal coating and potting.

Core Functionality:

Replace microcontroller, change connectors, and code software to send control signals to the motor drivers

Tier 1 functions:

Add additional communication interfaces (I2C), and add temperature sensor.

Tier 2 functions:

Setup framework for communication between other boards, and improve board longevity.

Overview of proposed changes by affected area:

Microcontroller/Architecture Change:

Teensy -> Production-ready chip (most likely ARM based, i.e. STM32 family of processors)

Board:

support new microcontroller, adding additional communication interfaces (I2C), change to more robust connector. (will need to design pcb for both main control as well as finger sensors)

Sensor:

Addition of a temperature sensor to provide temperature feedback to the microcontroller.

Software:

change from Arduino IDE to new toolchain. (ARM has various base libraries such as mbed and can be configured for use with eclipse to act as IDE) Lay out framework to allow communication from other boards found in other parts of the arm.