
Rodent Deterrent and

Classification System

Final Report

May 2, 2024

Team 55

Jung Ki Lee

Mankeerat Sidhu

Rishab Vivekanandh

TA: Angquan Yu

Abstract

During the warmer seasons, a prevalent challenge arises across various outdoor environments,
including residential backyards, golf courses, and open grass fields: the incessant disruption
caused by rodents and avian species in their pursuit of subterranean prey such as earthworms and
soil-dwelling insects. This phenomenon not only poses a significant nuisance to grass farming
enterprises but also undermines the aesthetic appeal and horticultural efforts of individual
homeowners. Regrettably, existing deterrent methodologies have proven inadequate in providing
enduring solutions to this pervasive issue.

In response, our research endeavors sought to engineer an innovative solution by harnessing the
synergy of established technologies with cutting-edge advancements. Our devised two-part
system constitutes a pioneering approach aimed at effectively mitigating rodent intrusions. The
initial component of our system revolves around detection, predominantly facilitated by a
network of specialized sensors. Incorporating passive infrared (PIR) and ultrasonic sensors, this
phase is engineered to discern motion patterns indicative of rodent activity, subsequently
activating the ultrasonic component to spatially map the environment. Following successful
detection, the secondary phase of our system is invoked, focusing on the active deterrence of
rodent presence. Leveraging advanced object recognition models, exemplified by YOLOv8, in
tandem with a camera apparatus, our solution adeptly identifies and tracks the targeted species.
Upon accurate detection, the system orchestrates a dual-pronged deterrence mechanism,
featuring luminous LED illumination in a strobe-like fashion, complemented by the emission of
high-frequency sound waves via ultrasonic transducers.

The amalgamation of these multifaceted components culminates in a comprehensive deterrent
system, poised to effectively address the persistent challenge of rodent and avian intrusion within
diverse outdoor environments. This research not only signifies a pivotal advancement in pest
management technology but also underscores the potential for interdisciplinary collaboration to
engender innovative solutions to real-world challenges.

Table of Contents
1. Introduction 1

1.1 Problem 1
1.2 Solution 1
1.3 High Level Requirements 1

2. Functionality 2
3. Subsystem Overview 3

3.1 Subsystem Design 3
3.1.1 Deterrent Subsystem 4
3.1.2 Microcontroller + Communication Subsystem 7
3.1.3 Software Subsystem 8
3.1.4 Power Subsystem 12
3.1.5 Mechanical Subsystem 14
3.1.6 Sensor Subsystem 15

4. Design 15
4.1 Initial Design 15
4.2 Design Changes 16

5. Cost Analysis 17
5.1 Labor Costs 17
5.2 Parts Cost 17
5.3 Grand Total Cost 18

6. Schedule 18
7. Ethics and Safety 19
8. Conclusion 20

8.1 Accomplishments 20
8.2 Uncertainties 20
8.3 Future Work 20

References 21
Appendix A - Object Detection Code 22

1. Introduction

1.1 Problem
Every summer and fall, thousands of backyards, lawns, golf courses and open grass fields suffer from
rodents and birds digging the ground searching for earthworms, soil-dwelling insects, and insect larvae.
This leaves behind large patches of loose turf and ruins the grass. Not only is this a huge problem for the
grass farming industry but is also a nuisance for every backyard owner, ruining the aesthetics and plants
grown on the lawn. The current deterrent methods are technologically naive including just a motion
sensor, lights and loud sounds which cause loud noises at night, fail to prevent lawn digging, and leave
the user unaware of the type of rodent affecting their lawn.

1.2 Solution
We propose a rodent detection and deterrent system which comprises many parts. Using infrared and
ultrasonic sensors on a rotating servo, we would detect any rodent outside of the usual landscape of the
lawn the device is placed in. The PI camera system would simultaneously work to take a clean shot of the
rodent/bird and store it in the file system. If recognized to be a ground digging rodent, for the actual
deterrent, our colored lights and localized speaker beeps go in the direction of the rodent rather than in a
single direction like previously commercialized methods. This ensures rodent deterrence and also informs
the user the type of animals responsible for digging their lawn.

1.3 High Level Requirements
1. The system must be able to successfully and accurately detect rodents with > 90% success rate

and also avoid false detections based on other movements in the environment (eg. person
walking, dog running).

2. Components should have high durability and battery capacity to ensure a long lasting solution
(battery life of up to a month).

3. Sensors should be capable of detecting at a relatively long range while also being able to scan a
large field of view (360° field of view and 10m radius).

1

2. Functionality

Figure 1: Block Diagram

In our block diagram (Figure 1), we see how multiple subsystems come together to create our intended
functionality, but it is equally important to understand the functionality of this system. We created a 2-part
system that, when combined, would effectively deter the rodents. The first step in the process of the
system is the detection. For our project, this consisted of most of our sensors. The sensors we used for this
project were PIR and ultrasonic sensors. The detection system first aims to detect motion of the object
through the PIR sensors and then activate the ultrasonic. We used this methodology to ensure that we only
utilize power when necessary. This is ensured since the PIR sensors stand still and cover a 360° field of
view, and no other sensor will turn on until this occurs. The ultrasonic sensor’s goal on the other hand is
to map the environment and to identify where the target is in the environment. We showed this by also
creating a helpful visual for the radar (Figure 2). After this phase, the second part of the system is
activated and is involved with deterring the rodent. The system uses a camera and novel object detection
models (YOLOv8) to identify the rodent, track it, and activate the deterrent mechanisms. Our system uses
two main deterrence systems: bright LEDs and ultrasonic transducers. Once the camera correctly detects
the animal, the LEDs are activated in a strobe-like manner and the buzzer is activated at ultrasonic
frequencies. After activating these sequences of events, the rodent is highly likely to be deterred from the
area.

2

Figure 2: Radar Visual

3. Subsystem Overview

3.1 Subsystem Design
This project consists of several integral subsystems that our team needs to build to ensure the success of
this project as displayed in the block diagram (Figure 1). These subsystems will need to work together to
reach our goal of deterring rodents. Our system is comprised of six core subsystems:

1. Deterrent Subsystem
2. Microcontroller Subsystem
3. Software Subsystem
4. Power Subsystem
5. Mechanical Subsystem
6. Sensor Subsystem

For each of the subsystems, we will briefly discuss their importance within the whole scope of the project,
while also discussing essential requirements we need from components that are core to the subsystems.
Lastly, we discuss how each of the subsystem requirements are verified in a procedural manner.

3

3.1.1 Deterrent Subsystem
The deterrent subsystem receives signals from the sensor and microcontroller subsystem. When the sensor
subsystem detects a rodent, the sensor subsystem and the microcontroller subsystem sends appropriate
signals, activating the deterrent system. The deterrent subsystem is core to our entire system, and the
success of this subsystem relies heavily on the success and reliability of the devices we are using.
Therefore, this subsystem requires heavy attention and thoughtfulness in its design.

a. Lights
i. When the deterrent system detects a rodent, the system should produce a lighting

mechanism to startle the rodent.

Requirements Verification Verification
Status

1 The lights should be blue
and flashing in 0.2s
intervals

● Set up the lights according to the specified
configuration (blue color, flashing at 0.2s
intervals).

● Use a stopwatch or timing device to measure the
duration of each flash.

● Confirm that the lights flash at intervals of 0.2
seconds consistently by observing multiple cycles
of flashing.

● Record the timing of each flash and calculate the
average interval to ensure compliance with the
requirement.

● Repeat the verification process multiple times to
ensure consistency and reliability of the flashing
pattern.

Yes

2 The lights should have a
capacity to reach 500 nits

● Use a photometer or light meter capable of
measuring luminance

● Initially position the sensor of the light meter
within the industry standard of 10-50 cm from the
lights.

● Activate the lights and measure the luminance
emitted by the lights.

● Record the luminance value and compare
● Repeat the measurement process from steps 3 at

varied distances to account for variations in light
intensity.

Yes

3 The lights require 20mA
current and should be gated
to create flashing

● Measure the current flowing through the lights
using a multimeter or current probe.

● Connect the lights to a power source capable of
supplying the required current.

● Verify that the current drawn by the lights does
not exceed 20mA during operation.

● Use an oscilloscope or logic analyzer to observe
the gating signal applied to the lights for flashing.

● Confirm that the gating signal effectively controls
the on-off cycling of the lights to create the

Yes

4

flashing effect.
● Ensure that the gating signal maintains the

specified flashing pattern (0.2s intervals)
consistently.

● Validate the performance of the gating mechanism
under different operating conditions and loads.

b. Speaker
i. When the deterrent system detects a rodent, the speaker should produce sounds

that repels the rodent. The sounds should be outside the human hearing scale
such that the deterrent system won’t be an annoyance to the users. Furthermore,
the speakers should vary their frequency range such that the rodents don’t
become used to the sounds.

Requirements Verification Verification Status

1 The frequency at which the
speaker sound should be at
should above between 20kHz and
60kHz

● Use a frequency analyzer or
spectrum analyzer capable of
measuring ultrasonic
frequencies.

● Power the speaker and play
the sound

● Use the frequency analyzer to
measure the output frequency
of the speaker

● Verify that the measured
frequencies fall within the
specified range (20kHz to
60kHz).

● Repeat the frequency
measurement to ensure
consistency.

Yes

2 The speaker should be able to
reach ranges up to 5m

● Set up the speaker and a sound
level meter at a known
distance (e.g., 5 meters) apart
in an open space.

● Generate a sound signal with a
constant intensity level
through the speaker.

● Measure the sound pressure
level (SPL) at the specified
distance using the sound level
meter.

● Verify that the measured SPL
meets the specified threshold

Yes

5

for audibility at the given
distance.

3 The speaker should have a
minimum strength of 60 dB

● Use a sound level meter to
measure the output strength
(sound pressure level) of the
speaker.

● Generate a sound signal with a
constant intensity level
through the speaker.

● Measure the SPL at a
specified distance from the
speaker.

● Verify that the measured SPL
exceeds the specified
minimum threshold of 60 dB.

Yes

4 The speaker should have a
current source that doesn’t
exceed 50 mA given a 5V power
source

● Connect the speaker to a 5V
power source.

● Measure the current passing
through the speaker using a
multimeter.

● Ensure that the measured
current does not exceed 50
mA.

● Document the results and
compare them against the
specified requirement.

No

5 The speaker should be randomly
vary the timing of the bursts of
ultrasonic sound waves

● Use an oscilloscope or logic
analyzer to monitor the timing
of the bursts of ultrasonic
sound waves generated by the
speaker.

● Play a series of sound signals
through the speaker and
observe the timing of the
bursts.

● Verify that the timing of the
bursts exhibits random
variation, with no discernible
pattern or repetition.

● Analyze the waveform to
confirm that the bursts occur
at irregular intervals, as
required by the specification.

No

6

3.1.2 Microcontroller + Communication Subsystem
The microcontroller will process all the information with lowest possible latency and integrate the sensors
with the deterrence system. The success of the microcontroller is integral, as it will serve as the
middle-man for passing critical information from the software subsystem, to the deterrence and power
subsystems. Furthermore, the microcontroller is also essential for translating the data from our sensor
subsystem, to the software subsystem, such that the software subsystem can perform at the highest level.
Although the microcontrollers themselves that we are using for our design are off-the-shelf, we do include
requirements that we need from our microcontrollers for this subsystem to successfully work.

Requirements Verification Verification Status

1 Microcontroller should have
communication interfaces
capable of at least 1 Mbps for
UART, 10 Mbps for SPI, and
400kHz for I2C

● Connect the microcontroller to
a compatible device for UART,
SPI, and I2C communication.

● Transmit and receive data
through each communication
interface while measuring the
transfer speed.

● Use a suitable measuring
device or protocol analyzer to
monitor the data transfer rate.

● Verify that the UART
communication achieves a
minimum speed of 1 Mbps,
SPI achieves 10 Mbps, and I2C
achieves 400 kHz.

No

2 Microcontroller should support
USB 3.0 for high communication
protocols for data transfers of at
least 100 Mbps

● Connect the microcontroller to
a USB 3.0 compatible device
or host.

● Transfer data between the
microcontroller and the USB
host while measuring the data
transfer rate.

● Use appropriate tools or
software to monitor the USB
data transfer speed.

● Verify that the microcontroller
supports USB 3.0 and achieves
a minimum data transfer rate of
100 Mbps.

● Ensure that the USB
communication remains stable
and reliable during the
verification process.

No

3 Microcontroller should have
processing speed of at least 100

● Execute real-time data
processing tasks and

No

7

MHz to handle real-time data
processing and communication
efficiency

communication protocols on
the microcontroller.

● Measure the execution time of
critical operations or
algorithms using a stopwatch
or timing device.

● Verify that the microcontroller
can complete essential tasks
within the specified time
constraints.

● Monitor the microcontroller's
clock frequency during
operation to ensure it operates
at or above 100 MHz.

4 Microcontroller should have
minimum RAM of 32 KB and
minimum flash memory capacity
of 256 KB to store program and
code data

● Access the microcontroller's
datasheet or specifications to
confirm the RAM and flash
memory capacity.

● Utilize debugging tools or
software to retrieve
information about the
microcontroller's memory
resources.

● Verify that the
microcontroller's RAM
capacity is at least 32 KB and
flash memory capacity is at
least 256 KB.

● Allocate and store program
code and data on the
microcontroller to ensure it fits
within the available memory

No

3.1.3 Software Subsystem
The software subsystem’s success is essential to our whole project succeeding. The software subsystem
will work side by side with data provided from any sensor module to ensure that the tracking of the
rodents is accurate and effective. The software will perform analysis on the live feed of the camera
sensors as a means of detecting and tracking the rodent. The vision detection should occur with low
latency, such that the analysis can essentially be done in real time. The goal in the end of this subsystem is
to identify the rodent within the view accurately. Figure 3 shows a high level flow diagram of how the
software subsystem will work. The model we will create will be trained on a robust dataset and be
processed using open source databases and libraries like OpenCV and PyTorch. The model will be
extensively tested using the dataset to tune and analyze its performance. In the end, the results of the
software subsystem will provide signals to the other modules.

8

Requirements Verification Verification Status

1 Software should detect rodent
with +90% accuracy

● Set up a testing environment
with representative input data
for rodent detection

● Pass in random images from
the rodent image dataset to
the model

● Measure the accuracy and F1
score for the run

● Repeat the testing with
different input images to
ensure robustness and
reliability

● Collect data and see if the
accuracy exceeds the
specified amount

Yes

2 The detection time should be
done in real time and should have
latencies lower than 0.1s

● Set up a testing environment
with representative input data
for rodent detection.

● Implement the rodent
detection algorithm or model
on the software subsystem.

● Simulate the detection
process with various inputs
representing different
scenarios and conditions.

● Measure the time taken for
the software to process each
input and detect the presence
of a rodent.

● Verify that the detection
latency is consistently lower
than 0.1s for all test cases.

Yes

3 Require a database of at least
1000 images of rodent to train
vision model on

● Collect or curate a dataset
comprising at least 1000
images of rodents for
training the vision model.

● Ensure that the dataset
includes diverse images
representing various rodent
species, poses, environments,
and lighting conditions.

● Verify the integrity and
quality of the images in the
dataset to ensure suitability
for training.

● Use data validation

Yes

9

techniques to confirm that
the dataset meets the
specified quantity
requirement.

● Perform statistical analysis to
ensure the dataset's diversity
and representativeness for
effective model training.

● Document the sources of the
images and any
preprocessing steps applied
to the dataset for
transparency and
reproducibility.

4 Data should be constantly
publishing information for other
subsystems to use

● Implement data publishing
functionality within the
software subsystem to
continuously transmit
relevant information.

● Set up a data monitoring
system to track the
publication of information in
real-time.

● Subscribe other subsystems
or modules to receive the
published data streams.

● Monitor the data flow
between subsystems and
verify that information is
consistently published at
regular intervals.

● Perform stress testing to
evaluate the software's ability
to maintain continuous data
publishing under varying
loads and conditions.

● Ensure that the published
data is accurate, relevant, and
up-to-date for consumption
by other subsystems.

Yes

10

Figure 3: Software Detection High Level Overview

To meet the requirements of the software subsystem, we created a high level overview of how the object
detection mechanism would work. Figure 3 describes the process of achieving this. Our object detection
code was based on a model known as YOLO (You Only Look Once), specifically the YOLOv8n model,
which is an extremely pruned down model from the normal mode. In the process of creating the object
detection code for rodents, we realized that it was extremely difficult to meet the requirements. Achieving
an accuracy of 90% is very difficult, because accuracy is highly dependent on the amount of training
data.

Figure 4: Human vs Mouse Recognition Accuracy

11

In Figure 4, we see that, when comparing the object detection accuracy with human and mouse, we see
that accuracy takes a relatively hard hit. In our testing we saw an accuracy of around 80% for detection of
rodents compared to around 95% for humans. The main reason for this is that there is extensive data and
annotated images for humans, and significantly less for rodents such as mice and racoons.

The average frame rate that we saw, when running the model on the RPi4 was around 14 FPS. When
running the model on a higher performance computer, it reached 60 FPS. The frame rate significantly
took a hit on the latency of the deterrence system being activated. Since the frames were low on the RPi4
while the object detection algorithm was acting, we did see instant detection with a latency of lower than
0.1 ms. However, because the frames were extremely low on the RPi, the accuracy of the detection took
hits as some frames appeared to be blurry due to the low frame rate.

Nevertheless, the remainder of the requirements within the software subsystem were met. In total, we
collected around 1,200 images to train the model and the object detection code was consistent sending
information throughout the system to activate and deactivate certain systems. On a side note, we should
have used more training images to achieve higher accuracy, but this was not feasible due to the time
constraints of this project.

3.1.4 Power Subsystem
The power subsystem is responsible for generating, storing, regulating, distributing, and managing
electrical power to ensure the proper functioning of onboard systems and instruments. This system
includes using a 120v wall connector, multiple power adaptors and voltage regulators.

Requirements Verification Verification Status

1 The power is set to ensure
overcurrent protection,
overvoltage protection, and
thermal management to prevent
damage to electrical components
and ensure safe operation.

● Review the design and
specifications of the power
subsystem to ensure it includes
overcurrent protection
mechanisms such as fuses or
circuit breakers.

● Verify the presence of
overvoltage protection
components such as voltage
regulators or surge protectors in
the power supply circuitry.

● Test the thermal management
system under various operating
conditions to ensure it
effectively dissipates heat and
prevents components from
overheating.

● Conduct stress tests and fault
simulations to confirm that the
protection mechanisms trigger
appropriately in case of

Yes

12

overcurrent, overvoltage, or
thermal issues.

2 Using power from a wall
connector ensures continuous
power to all the subsystems and
rotation of the sensors mounted
on top of servos.

● Test the protection circuits for
handling overcurrent and
overvoltage conditions.

● Monitor the temperature of the
regulators during operation to
ensure they do not exceed
thermal limits.

● Perform tests to confirm that the
step-up and step-down
regulators maintain a stable
output voltage under varying
load conditions.

Yes

Although we use a wall connector for our project, we run experiments with a 10,000 mAh battery pack to
test the ability to be used and placed in the lawn for extended amounts of time. The results are shown in
the graph below as the system was tested extensively without staying in idle (PIR motion) setting for too
long. This test solidified the battery life of around 12 hours with a small phone charging battery pack
(Figure 4). Thus further attempts can be made to install solar powered batteries to the system in future
work.

Figure 4: Battery Depletion

13

3.1.5 Mechanical Subsystem
The mechanical subsystem involves any of our parts that requires any movement. In the scope of this
project, this includes all the servos that will move our device so that it is able to scan the entire area.
Ensuring these mechanical components work are important, as we want to ensure we can scan the entire
field of view.

Requirements Verification Verification Status

1 The rotor should have a minimal
RPM of 10 RPM to allow for
continual monitoring of the
environment

● Install the rotor in the intended
environment and measure its
rotational speed using
appropriate sensors or
instrumentation.

● Validate that the rotor
consistently maintains a
minimum RPM of 10 RPM
under various operating
conditions.

Yes

2 Servos should have a MTBF
(mean time between failures) of
10,000 hours to ensure the servos
are capable of constant activation
and maintaining performance

● Gather reliability data for the
servos or reference similar
models with known MTBF
values.

● Conduct accelerated life tests
on a sample of servos to
estimate their failure rate over
time.

● Analyze the test results to
calculate the MTBF and
compare it against the
specified requirement of
10,000 hours.

No

3 The platform, which consists of
the necessary systems (sensors,
camera etc.), should be able to
withstand at least 10 N of force
such as to prevent dislodgement.

● Apply a controlled force of at
least 10 N to the platform in
different directions to simulate
potential dislodgement
scenarios.

● Verify that the platform
remains securely attached and
functional after exposure to
the specified force levels.

Yes

3.1.6 Sensor Subsystem
The sensor subsystem is essential to our project. It will feature an array of sensors that we will congregate
to ensure that we can accurately track the rodent. Furthermore, the need for multiple sensors acts as a

14

failsafe, to ensure that we can still perform the task should any of the other sensors be inhibited in doing
their job. The data from these sensors will interact directly with the microcontrollers of our system, which
will pass the data onto our software subsystem. The parts within the sensor subsystem feature
off-the-shelf items, so we will not mention any requirements and verifications.

4. Design

4.1 Initial Design
Figure 1 shows our initial block diagram for the design of completing this system. While we followed this
diagram rather religiously, we realized that, along the way, there were changes that needed to be made to
make these subsystems work together more efficiently.

Figure 5: Final Product

Before explaining design changes that were made, it is essential to describe the final design. Figure 5
shows our final design. The two towers and the base of our design are custom 3D printed designs that we
made. Again, this kept in touch with our initial idea to create a 2 part solution where one tower would be
dedicated to sensing, and the other to deterring. Figure 6 shows a bare bones model of our 3D printed
structures. The base structure of our system was designed to house the PCB, servos, the Raspberry Pi 4
and any additional breadboards that we would need for wiring. The white tower, which sits atop one of
the servos, is the sensing system within our mechanism. The PIR sensors, and ultrasonic sensors reside on
this tower. This tower remains still until the PIR sensor detects movement, after which the tower rotates
and maps the environment using the ultrasonic sensor aboard. The green tower in Figure 5 is our main
deterrent tower. On this tower sits our LEDs, our ultrasonic transducer and our camera. When the

15

deterrent system is activated, LEDs start flashing at 10 Hz. The ultrasonic transducer also produces
ultrasonic sounds of frequency 20kHz as such sounds are known to be effective at deterring rodents [1].
This tower also contains an extra servo, to which the camera is attached to, as a means of covering the
360° field of view, which is not possible given one servo.

Figure 6: 3D Printed Structure

4.2 Design Changes
In the process to create this final design, we had several design changes that we had to make due to
unexpected obstacles created from our initial design.

For one, we noticed that our initial design clashed with our high level requirement to conserve power. By
keeping the camera on the sensing tower, we actively need to power it to ensure it stays on. Furthermore,
the camera needs to be able to cover the 360° view, which would mean that additional power would be
spent on rotating the servos. This initial design was inefficient and failed to meet the goals that we had set
with our high level requirement. As such, we converted our design, moving the camera to the deterrence
tower. With this design change, it allowed us to keep the sensing tower still for the most part, allowing it
to only be activated once the PIR sensor detects any motion. Furthermore, it would preserve power, as
only when the PIR sensor detects motion, will the camera receive power from the Raspberry Pi. As such
we were able to see longer battery life when connecting our system to a battery pack, compared to our
initial design.

Another design change we had was with the use of the ESP32. This microcontroller was chosen to be the
main hub for our code (Figure 7). However, during the process of coding the ESP32 we realized a few
issues with its role as the main microcontroller. Firstly, we realized that the microcontroller had not
enough near compute power to load and run our object detection model. In addition to this, we also
realized that, unless communicated to serially, the data transfers were too slow between devices. Although
we were unable to change our PCB design to address these changes, we decided to host most of the
software materials on the Raspberry Pi, and utilized our PCB as a power source for the systems.

16

Figure 7: Initial PCB Design

5. Cost Analysis

5.1 Labor Costs
The average ECE graduate student earns around $45-$50 an hour. Our team is committed to working a
minimum of 10 hours a week henceforth. Committing this time will be necessary to complete the several
requirements along the way. Given the calendar, we will have around 8 weeks to complete this project.
With these numbers, we are approximating the lower bound of the labor costs to be around $4,000 per
member. Considering our group has 3 members, we are looking at labor costs of around $12,000 for the
entire team.

5.2 Parts Cost

Description Part Name Quantity Cost

Raspberry Pi 4 Raspberry Pi 4 1 $ 75.00

ESP-32E
Microcontroller

ESP32-S3-MINI-1U-N8 1 $ 3.87

PI Camera Module Raspberry Pi Camera
Module 2

1 $ 18.00

17

PIR sensor HC-SR501 3 $ 3.00

Ultrasonic
Sensor/transducer

HC-SR04 2 ECE store

Blue LED Blue LED 3 ECE store

Servo Motor MG996R 2 $ 18.00

Linear Voltage
Regulator

TLV75801PDRVR 1 $ 0.36

TVS Diodes D3V3XA4B10LP-7 1 $ 0.37

5V Power Adaptor 5V Power Adaptor 1 Free

3D Printer Filament 3D Printer Filament 1 $ 30.00

5.3 Grand Total Cost
The total labor cost for this project was approximated to be $12,000 USD and the cost of parts that are
essential to our project is $148.60. Therefore, the grand total cost of this project is $12,148.60 USD.

6. Schedule
Week
of

Task Person(s)

2/26 Design Review All

Order parts for prototyping All

Develop program for detection Rishab

Visit machine shop if needed All

Begin designing PCB Jung Ki /
Mankeerat

3/4 Complete and test software subsystem Rishab

Finish initial design of PCB, review it and order if possible Jung Ki /
Mankeerat

3/11 Spring Break All

3/18 Soldering of PCB parts All

Ordered parts come in, test software subsystem on Arduino/Rpi Mankeerat,
Rishab

18

3/25 Integrate the sensors onto the PCB and test Rishab

Finish building mechanical subsystem Mankeerat, Jung
ki

4/1 Combine all subsystems All

Test for minor bugs

4/8 Run tests for deterrence All

4/15 Mock Demo All

4/22 Final Demo All

Mock Presentation All

7. Ethics and Safety
Ethics:
It's crucial that we adhere to ethical guidelines throughout the duration of this project. One particularly
prominent ethical consideration is the potential for causing harm [2]. Within the scope of our project, a
primary concern is the welfare of the animals we're trying to prevent entering areas where our system is
placed. Our group is committed to upholding this code by prioritizing the well-being of these animals
above all else.

As a team, we've recognized that our approach involves influencing the behavior of these species to help
them recognize restricted areas. For this reason, to prevent any ethical breaches, we are using indirect
methods, such as audio and visual cues, as a means of solving the core problem. We believe this strategy
not only safeguards the animals but also mitigates the necessity for harsher measures like pest control,
particularly in situations where it is unwarranted.

Safety:
Safety is of the utmost concern to our group. We want to ensure that the application of our device will be
safe for both the users and the animals we are targeting with our device. Our first safety concern is the
user. With the use of ultrasonic sound, we want to ensure that it is being utilized at a low intensity, since
ultrasonic sounds can be damaging to humans even if they are not within the human hearing frequency
range. Our second safety concern is with regards to the animals and is related to the use of lights and
sounds within our system. We want to ensure that this deterrent system is effective, but also not harmful
to them. Therefore, our light system will be implemented such that the intensity will not be damaging to
the animal, and the sound system will be run at high frequencies, but not high enough that it will cause
damage to the ears of the animals.

Our second safety concern will be the moving parts of our invention. The device will be moving in a 360°
fashion, and this will require several moving parts. Therefore, we want to ensure that our design is safe
and make sure nothing can get clamped and affect these moving parts. Lastly, is the safety regarding
lithium batteries the project will require. Lithium batteries are notorious for igniting, especially in heated
settings. Given that our device will be placed outside, we want to make sure that our batteries are sealed
in a safe encasing, such that it does not have direct exposure to sunlight.

19

8. Conclusion

We are extremely proud at how far we have come from the initial planning of this project. Throughout the
development of this project we had several obstacles that we needed to overcome, alongside several last
minute design changes to make this project a reality. Furthermore, we believe that we can continue this
project, and that this initial design is merely a prototype that we can expand on to make it a reality.

8.1 Accomplishments
The project successfully achieved the final functionality we wanted. The code was able to successfully
detect, when in vision, multiple different breeds of rodents and animals. Furthermore, once detected, the
system was successfully able to follow and apply the deterrence system. With regards to many of the
other functionalities we wanted, we were successful in developing a system that could cover a 360° field
of view. This was achieved by the adapted design of using two high torque servos alongside one another,
since each servo only had the capability to cover a 180° angle. Our deterrence system was heavily reliant
on the ultrasonic transducer utilized. While testing, we observed that the ultrasonic transducer, in tandem
with flashing LEDs, was successful, and, even in real life scenarios, provided the most effect during the
deterrence process.

8.2 Uncertainties
When the deterrent system is activated, both the lights and ultrasonic transducer turn on to repel the
rodent. When we tested this outside into the real world environment, we observed that the rodent was
being repelled by our device. Since both methods are known to scare rodents away, it is uncertain as to
which mechanism was actually responsible for the deterrence. We were not able to individually test each
of the deterrence mechanisms due to difficulties in debugging when disabling one of the systems, so we
cannot be certain that both the lights and the ultrasonic sounds were scaring the squirrels away.

8.3 Future Work
This project has a lot of potential, and the current implementation we had finished was merely a prototype
of something we can easily expand upon and that can be flushed out to be a good product. To reach this
stage however, we believe that there are a few improvements that we should make.

Firstly, we believe that we need to improve either our algorithms or compute power. As mentioned before,
the current implementation of the system using RPi 4 does not satisfy the computing requirements to
perform novel object detection and this is an avenue that we would want to test out more. Additionally,
we would like to work on handling multiple objects that are in the view of the camera. Currently, the
object detection code has difficulty deciding which object to follow if there are multiple objects in the
view. Expanding our project to cover this will improve our device into a more effective one. Lastly, we
would like to make the product completely autonomous and improve the packaging. Currently, the system
works with a wall connector and is therefore not completely autonomous, due to the need of needing
some sort of plug. We would like to adapt this project to utilize a chargeable battery that can be charged
using solar panels. Ideally, we would like to compile all of this into a compact and neat packaging.
With this, we believe that the future work will allow us to complete robust and usable products for users
who struggle with this issue of rodents destroying lawns.

20

References
[1] M. Bomford and P. H. O’Brien, “Sonic Deterrents in Animal Damage Control: A Review of Device
Tests and Effectiveness,” Wildlife Society Bulletin (1973-2006), vol. 18, no. 4, pp. 411–422, 1990,
Accessed: May 02, 2024.
[2] Association for Computing Machinery, “ACM Code of Ethics and Professional Conduct,” Association
for Computing Machinery, Jun. 22, 2018. https://www.acm.org/code-of-ethics

21

Appendix A - Object Detection Code
import cv2
from picamera2 import Picamera2
import numpy as np
from led_test import *
from buzzer_test import *
import RPi.GPIO as GPIO
import time

classNames = []
net = None
picam2 = None
lock = False
servo_one = None
servo_two = None

def setup_servo():
global servo_one, servo_two
Servo setup
servoPinOne = 32 # adjust value
servoPinTwo = 33
GPIO.setmode(GPIO.BOARD)

if servo_one is not None:
print ("servo one clean")
servo_one.stop()
GPIO.cleanup(servoPinOne)

if servo_two is not None:
print("servo two clean")
servo_two.stop()
GPIO.cleanup(servoPinTwo)

print("Skipped clcean, we clean either way")
GPIO.cleanup(servoPinOne)
GPIO.cleanup(servoPinTwo)

GPIO.setup(servoPinOne, GPIO.OUT)
GPIO.setup(servoPinTwo, GPIO.OUT)

servo_one = GPIO.PWM(servoPinOne, 50)
servo_two = GPIO.PWM(servoPinTwo, 50)
servo_one.start(7) # adjust servo values
servo_two.start(7) # adjust servo values

def set_servo_angle(angle, number):
global servo_one, servo_two

if number == 0:
duty_cycle = 1.0 / 18.0 * angle + 2
servo_one.ChangeDutyCycle(duty_cycle)
time.sleep(0.001)

else:
duty_cycle = 1.0 / 18.0 * angle + 2
servo_two.ChangeDutyCycle(duty_cycle)
time.sleep(0.001)

def getObjects(img, thres, nms, draw=True, objects=['mouse', 'racoon']):
classIds, confs, bbox = net.detect(img, confThreshold=thres, nmsThreshold=nms)
objectInfo = []
if len(classIds) != 0:

for classId, confidence, box in zip(classIds.flatten(), confs.flatten(), bbox):
className = classNames[classId - 1]
if className in objects:

flash_led()
flash_buzzer()

22

objectInfo.append([box, classNames[classId - 1], confidence])
if draw:

cv2.rectangle(img, box, color=(0, 255, 0), thickness=2)
cv2.putText(img, classNames[classId - 1].upper(), (box[0] + 10, box[1] +

30),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)

cv2.putText(img, str(round(confidence * 100, 2)), (box[0] + 200, box[1] +
30),

cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
else:

turn_off_led()
turn_off_buzzer()

if len(objectInfo) > 0:
box, _, _ = objectInfo[0]
center_x = (box[0] + box[2]) // 2
center_y = (box[1] + box[3]) // 2
return img, objectInfo, (center_x, center_y)

else:
return img, objectInfo, None

def cameraOn():
global picam2, classNames, net, servo_one, servo_two
picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration())
picam2.start()

classFile = "/home/a123/Desktop/Object_Detection_Files/coco.names"
with open(classFile, "rt") as f:

classNames = f.read().rstrip("\n").split("\n")

configPath =
"/home/a123/Desktop/Object_Detection_Files/ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt"

weightsPath = "/home/a123/Desktop/Object_Detection_Files/frozen_inference_graph.pb"

net = cv2.dnn_DetectionModel(weightsPath, configPath)
net.setInputSize(320, 320)
net.setInputScale(1.0 / 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)

angle = 0

set_servo_angle(0, 1)
set_servo_angle(0,0)

rotation_and_tracking()

def rotation_and_tracking():
global lock
angle = 0
while True:

Rotate from 0 to 180 degrees
for angle in range(0, 361, 10):

print("Curr angle")
print(angle)

if angle > 180:
send_angle = angle%180
set_servo_angle(send_angle, 1)

else:
set_servo_angle(angle, 0)

frame = picam2.capture_array()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(frame, (640, 480))
result, objectInfo, center = getObjects(img, 0.45, 0.2)

23

print(len(objectInfo))
if len(objectInfo) > 0:

lock = True
print(lock)
break

cv2.imshow("Output", result)
if cv2.waitKey(1) == ord('q'):

break

if lock:
Track the person
while lock:

frame = picam2.capture_array()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(frame, (640, 480))
result, objectInfo, center = getObjects(img, 0.45, 0.2)

if center is not None:
center_x, center_y = center
img_width = img.shape[1]
img_height = img.shape[0]

if center_x < img_width // 4 and angle > 0:
angle -= 10

elif center_x > img_width * 3 // 4 and angle < 180:
angle += 10

if angle > 180:
send_angle = angle%180
set_servo_angle(send_angle, 1)

else:
set_servo_angle(angle, 0)

print(angle)
cv2.imshow("Output", result)
if cv2.waitKey(1) == ord('q'):

break

if len(objectInfo) == 0:
lock = False

angle = 360
Rotate from 180 to 0 degrees
for angle in range(360, -1, -10):

if angle > 180:
send_angle = angle%180
set_servo_angle(send_angle, 1)

else:
set_servo_angle(angle, 0)

print("Else")
print(angle)
frame = picam2.capture_array()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(frame, (640, 480))
result, objectInfo, center = getObjects(img, 0.45, 0.2)

if len(objectInfo) > 0:
lock = True
break

cv2.imshow("Output", result)
if cv2.waitKey(1) == ord('q'):

break

24

if lock:
Track the person
while lock:

frame = picam2.capture_array()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(frame, (640, 480))
result, objectInfo, center = getObjects(img, 0.45, 0.2)

if center is not None:
center_x, center_y = center
img_width = img.shape[1]
img_height = img.shape[0]

if center_x < img_width // 4:
angle -= 10

elif center_x > img_width * 3 // 4:
angle += 10

if angle > 180:
send_angle = angle%180
set_servo_angle(send_angle, 1)

else:
set_servo_angle(angle, 0)

print(angle)
cv2.imshow("Output", result)
if cv2.waitKey(1) == ord('q'):

break

if len(objectInfo) == 0:
lock = False

break

stop_camera()

def stop_camera():
global picam2, servo_one, servo_two

print("Stop cam")
if picam2 is not None:

picam2.stop()
picam2 = None

cv2.destroyAllWindows()

if servo_one is not None:
servo_one.stop()
GPIO.cleanup(32)

if servo_two is not None:
servo_two.stop()
GPIO.cleanup(33)

GPIO.cleanup()

import RPi.GPIO as GPIO
import time
import cv2
from picamera2 import Picamera2
import numpy as np
import math
import sys
import threading
from radar import *
from detect import *

change all these numbers to their respective GPIO pins

25

pir_1_in = 11
pir_2_in = 13
pir_3_in = 15

led_out = 37
buzzer_out = 35

radar code sets up servo for pir/UR tower so we dont worry about this

def main():

#Initialize all sensors/servos
setup_servo()
while True:

GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False) # Ignore warning for now

#Inputs
GPIO.setup(pir_1_in,GPIO.IN)
GPIO.setup(pir_2_in,GPIO.IN)
GPIO.setup(pir_3_in,GPIO.IN)

#Outputs
GPIO.setup(led_out, GPIO.OUT)
GPIO.setup(buzzer_out, GPIO.OUT)

#Check if PIR detects anything

while True:

print (GPIO.input(pir_1_in))
print (GPIO.input(pir_2_in))
print (GPIO.input(pir_3_in))
if GPIO.input(pir_1_in) == 1 or GPIO.input(pir_2_in) == 1 or GPIO.input(pir_3_in)

== 1:
print("Motion detected")
break

#If does start radar
radar_loop()

#Once radar stops start camera
cameraOn()

print("Rodent deterred")

GPIO.cleanup()

main()

import RPi.GPIO as GPIO
import time
import threading

Set the GPIO mode to BCM (Broadcom SOC channel numbering)
GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False) # Ignore warning for now
Set the GPIO pin for the LED (you can change this to any available GPIO pin)
led_pin = 7 #change later

26

led_flashing = False
frequency = 1
GPIO.setup(led_pin, GPIO.OUT)
GPIO.output(led_pin, GPIO.LOW)

def flash_led():
global led_flashing
led_flashing = True

def flash_thread():
while led_flashing:

GPIO.output(led_pin, GPIO.HIGH)
time.sleep(0.15)
GPIO.output(led_pin, GPIO.LOW)
time.sleep(0.15)

flash_thread = threading.Thread(target=flash_thread)
flash_thread.start()

Define a function to turn off the LED
def turn_off_led():

global led_flashing
led_flashing = False
GPIO.output(led_pin, GPIO.LOW)

#turn_off_led()
import RPi.GPIO as GPIO
import time

Set the GPIO mode
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False) # Ignore warning for now

Set the GPIO pin for the ultrasonic transducer
TRIG_PIN = 32

Set the PWM frequency and duty cycle
PWM_FREQ = 10000 # 12 kHz
DUTY_CYCLE = 50 # 50% duty cycle

Set up the GPIO pin as an output
GPIO.setup(TRIG_PIN, GPIO.OUT)

Create a PWM object
pwm = GPIO.PWM(TRIG_PIN, PWM_FREQ)

Start the PWM signal
pwm.start(DUTY_CYCLE)

Set the total duration for the loop
TOTAL_DURATION = 5 # 5 seconds

Get the start time
start_time = time.time()

Generate bursts of pulses until the total duration is reached
while time.time() - start_time < TOTAL_DURATION:

Generate a burst of pulses for a specific duration
BURST_DURATION = 0.0025 # 250 microseconds
pwm.ChangeFrequency(PWM_FREQ)
time.sleep(BURST_DURATION)

Stop the PWM signal
pwm.stop()

Clean up the GPIO pins
GPIO.cleanup()

27

