Mock Presentation

Description

Similar to the Design Doc Check and the Mock Demo, the Mock Presentation is an informal, mandatory event designed to better prepare you for your Final Presentation. In these sessions, you will present a few of your slides (about 10-15 minutes), and get feedback from the course staff as well as a few invited Department of Communication TAs. You will also be able to see a few of your peers' Mock Presentations, as there are up to 3 teams per time slot.

Requirements and Grading

The Mock Presentation is meant to be an opportunity for you to get feedback on a subset of your final presentation. It is recommended that you choose some aspect of your project, and present the design, results, and conclusions from that aspect. In order to get relevant feedback on your presentation skills, your Mock Presentation should also have an introduction and conclusion. You will receive feedback on your delivery, the format of your slides, and the organization of your presentation. Your slides should generally include:

  1. Title slide: Names, group #, title.
  2. Introduction slide: What is the project?
  3. Objective slide: What problem does this solve?
  4. Design Slides: A few slides on design, requirements and verification (should include block diagram, math, graphs, figures, tables).
  5. Conclusion: Wrap things up, future work.

Mock presentation is graded credit/no credit based on attendance and apparent effort; showing up completely unprepared will earn no credit.

Submission and Deadlines

Sign-up is handled through PACE. Time slots are 1 hour long, and multiple groups will share a time slot. This will give you an opportunity to give and receive feedback from your peers. You will be required to stay until all groups have presented and received feedback.

GYMplement

Srinija Kakumanu, Justin Naal, Danny Rymut

Featured Project

**Problem:** When working out at home, without a trainer, it’s hard to maintain good form. Working out without good form over time can lead to injury and strain.

**Solution:** A mat to use during at-home workouts that will give feedback on your form while you're performing a variety of bodyweight exercises (multiple pushup variations, squats, lunges,) by analyzing pressure distributions and placement.

**Solution Components:**

**Subsystem 1: Mat**

- This will be built using Velostat.

- The mat will receive pressure inputs from the user.

- Velostat is able to measure pressure because it is a piezoresistive material and the more it is compressed the lower the resistance becomes. By tracking pressure distribution it will be able to analyze certain aspects of the form and provide feedback.

- Additionally, it can assist in tracking reps for certain exercises.

- The mat would also use an ultrasonic range sensor. This would be used to track reps for exercises, such as pushups and squats, where the pressure placement on the mat may not change making it difficult for the pressure sensors to track.

- The mat will not be big enough to put both feet and hands on it. Instead when you are doing pushups you would just be putting your hands on it

**Subsystem 2: Power**

- Use a portable battery back to power the mat and data transmitter subsystems.

**Subsystem 3: Data transmitter**

- Information collected from the pressure sensors in the mat will be sent to the mobile app via Bluetooth. The data will be sent to the user’s phone so that we can help the user see if the exercise is being performed safely and correctly.

**Subsystem 4: Mobile App**

- When the user first gets the mat they will be asked to perform all the supported exercises and put it their height and weight in order to calibrate the mat.

- This is where the user would build their circuit of exercises and see feedback on their performance.

- How pressure will indicate good/bad form: in the case of squats, there would be two nonzero pressure readings and if the readings are not identical then we know the user is putting too much weight on one side. This indicates bad form. We will use similar comparisons for other moves

- The most important functions of this subsystem are to store the calibration data, give the user the ability to look at their performances, build out exercise circuits and set/get reminders to work out

**Criterion for Success**

- User Interface is clear and easy to use.

- Be able to accurately and consistently track the repetitions of each exercise.

- Sensors provide data that is detailed/accurate enough to create beneficial feedback for the user

**Challenges**

- Designing a circuit using velostat will be challenging because there are limited resources available that provide instruction on how to use it.

- We must also design a custom PCB that is able to store the sensor readings and transmit the data to the phone.