Project

# Title Team Members TA Documents Sponsor
45 Continuous Arteriovenous Fistula (AVF) Monitoring Device [PITCHED PROJECT]
Aryan Parikh
Rishab Rao Veldur
Satyansh Yeluri
Surya Vasanth design_document1.pdf
design_document2.pdf
final_paper1.pdf
other1.pdf
proposal1.pdf
# Continuous Arteriovenous Fistula (AVF) Monitoring Device

Team Members:
- Aryan Parikh (aparik31)
- Rishab Rao (rveldur2)
- Satyansh Yeluri (syeluri2)

# Problem

Arteriovenous Fistulas/Grafts (AVFs/AVGs) are crucial to patients with end-stage kidney disease. They allow for hemodialysis, which has significant mortality and quality of life benefits in younger patients. Between 2000 and 2020, the prevalent count of individuals receiving HD nearly doubled to $480,516. In older patients, it’s often considered a lifeline. However, AVFs are known to “go down”. They are susceptible to stenosis, and thrombosis, and enlargement over time, leading to high-output cardiac failure. Currently there is no format for continuous monitoring of these grafts, and when they thrombose in the acute setting, often go undetected for days, if not weeks. The cost range to create an AV fistula is also between $3,401-$5,189. Several studies have pointed out that early graft intervention can improve the salvage of these fistulas, prolonging their use and minimizing the number of additional surgeries required. Finally, studies have found that if grafts are not intervened within 7 days, there are significant long term mortality risks and poor patient outcomes.

https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/1-incidence-prevalence-patient-characteristics-and-treatment-modalities

The basic tenet for vascular access monitoring and surveillance is that stenosis develop over variable intervals in the great majority of vascular accesses and, if detected and corrected, under dialysis can be minimized or avoided (dialysis dose protection) and the rate of thrombosis can be reduced.

https://www.ajkd.org/article/S0272-6386(06)00646-9/fulltext#relatedArticles

Problem Statement: Graft stenosis and thrombosis are the leading causes of loss of vascular access patency, with delay in treatment leading to loss of vascular access and increased mortality rates and decreased quality of life in patients with end-stage renal disease.

# Solution

AVFs are often embedded in the arm, where the radial artery and adjacent veins are involved in their creation. What clinicians use to determine fistula viability is palpation, where the palpable trill (or vibration) of the graft can be felt. In the context of vascular access for hemodialysis, a trill is often associated with the feeling of blood flow or the movement of blood through the graft. A strong, palpable trill suggests good blood flow through the access site, indicating that the fistula is functioning well.

The idea is to develop a device that can be attached as a patch adjacent to the fistula to sample this venous trill using auditory input and machine learning to gauge deviations from an initial baseline. The device would be placed initially and cross-referenced with the current gold standard of duplex ultrasound to establish a baseline. As the device lives with the patient, it will learn progressive changes in venous hum pattern (stenosis) that can provide information to clinicians on optimal follow-up. Otherwise, if it detects the absence of a hum (thrombosis) it will immediately alert the patient and provider for attention. Pitch should correspond with an increase in percentage of stenosis and be interpreted as more frequent oscillations in a pressure waveform over time.

# Solution Components

## Microphone

This subsystem would take in sound input from a small microphone to capture a signal underneath the skin and feed into a microprocessor input.

https://ieeexplore.ieee.org/document/7438386

TDK InvenSense T4076 & T4078 MEMS Microphones

## Microprocessor Unit

We will use an Attiny85 and supporting components on our PCB. We will have to add a micro usb programmer for the Attiny85 and then add bluetooth capabilities on top of that. The microcontroller will receive input from the Microphone Module which captures acoustic signals related to venous hum patterns. These signals are essentially sound waves produced by blood flow in veins. We will use an algorithm on the acquired data to help analyze the different frequency components present in the venous hum patterns. Then the microcontroller can analyze the frequency spectrum of the venous hum patterns. The microcontroller can then help us compare the identified patterns with predefined patterns associated with normal and abnormal venous conditions. Based on the comparison, the system can detect differences in the venous hum patterns. Depending on the detected differences, the microcontroller will generate an alert if needed.

## Power Subsystem

It will be a 5 V lithium ion battery. We will have to step down the voltage to 3.3 V. We have no need for battery recharging. We will also have supporting components for the battery.

# Criterion For Success

- Transmit audio to app
- Accuracy: Device is able to distinguish changes in fistula stenosis
- Achieve real time data transmission

Active Cell Balancing for Solar Vehicle Battery Pack

Tara D'Souza, John Han, Rohan Kamatar

Featured Project

# Problem

Illini Solar Car (ISC) utilizes lithium ion battery packs with 28 series modules of 15 parallel cells each. In order to ensure safe operation, each battery cell must remain in its safe voltage operating range (2.5 - 4.2 V). Currently, all modules charge and discharge simultaneously. If any single module reaches 4.2V while charging, or 2.5V while discharging, the car must stop charging or discharging, respectively. During normal use, it is natural for the modules to become unbalanced. As the pack grows more unbalanced, the capacity of the entire battery pack decreases as it can only charge and discharge to the range of the lowest capacity module. An actively balanced battery box would ensure that we utilize all possible charge during the race, up to 5% more charge based on previous calculations.

# Solution Overview

We will implement active balancing which will redistribute charge in order to fully utilize the capacity of every module. This system will be verified within a test battery box so that it can be incorporated into future solar vehicles.

Solution Components:

- Test Battery Box (Hardware): The test battery box provides an interface to test new battery management circuitry and active balancing.

- Battery Sensors (Hardware): The current battery sensors for ISC do not include hardware necessary for active balancing. The revised PCB will include the active balancing components proposed below while also including voltage and temperature sensing for each cell.

- Active Balancing Circuit (Hardware): The active balancing circuit includes a switching regulator IC, transformers, and the cell voltage monitors.

- BMS Test firmware (Software): The Battery Management System requires new firmware to control and test active balancing.

# Criterion for Success

- Charge can be redistributed from one module to another during discharge and charge, to be demonstrated by collected data of cell voltages over time.

- BMS can control balancing.

- The battery pack should always be kept within safe operating conditions.

- Test battery box provides a safe and usable platform for future tests.