Project

# Title Team Members TA Documents Sponsor
59 Automatic Titration System
Jack Viebrock
Jason Flanagan
Matthew Weyrich
Selva Subramaniam design_document2.pdf
final_paper1.pdf
photo1.png
photo2.png
presentation2.pdf
proposal2.pdf
video
# Automatic Titration System
## Team Members:
- Jack Viebrock (Jackav3)
- Jason Flanagon (Jasonpf2)
- Matthew Weyrich (Weyrich4)
## Problem
Titration is a time-consuming process that can introduce large amounts of error from the manual procedure, such as improper burette reading, accidental extra analyte added, and guessing on the endpoint with a color indicator. Automatic titration systems can help reduce this error but cost over $3,000, restricting their application to wealthy labs.
## Solution
We will create a lower-cost automatic titration system to bridge this gap in the market to make it affordable to have high-quality titration data accuracy over manual methods

## Solution Components:
### Subsystem 1: Sensors
PH Module Probe Detection and Acquisition Monitoring Control Industrial Inspection Tool PH014 PH Electrode Probe: Amazon.com: Industrial & Scientific
(https://www.amazon.com/Detection-Acquisition-Monitoring-Industrial-Inspection/dp/B08XMBGCM8/ref=asc_df_B08XMBGCM8/?tag=hyprod-20&linkCode=df0&hvadid=675719866680&hvpos=&hvnetw=g&hvrand=3781607236679164999&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=1016367&hvtargid=pla-2246775686040&psc=1&mcid=c6b1279b2a033a4ebc0bcac78d93f067 )

The titration system will not need the use of an indicator. To determine the amount of titrate to add to the solution, a pH sensor will be used. This sensor will connect to microcontroller, indicating the current acidity of the solution on a scale of 0-14, where 7 is the base value.
### Subsystem 2: Power System
We will be using an AC (120V, 60Hz) wall to DC (dependent on final components and circuits) adapter, additionally we will need to use dc-to-dc adapters for the varying dc voltages needed for the varying subsystem devices including the microcontroller (5.5V), stepping motor (2.8V). With those dc-to-dc converters, we can make our own PCBs or order prefabricated devices to perform the conversion. If time permits, we may dive into a battery system to support portability.
### Subsystem 3: Control
PIC PIC® 18F Microcontroller IC 8-Bit 48MHz 32KB (16K x 16) FLASH 28-SOIC
The microcontroller will be taking the live output voltage from the pH sensors and will control the speed and precision of the titrate pump accordingly. The microcontroller will also be in-charge of starting and ending the pump when the start button is pressed. Volume amounts per step of the motor will be pre-determined and calibrated so the microcontroller can determine volume.
### Subsystem 4: Motor
Our implementation of an automatic titration system will imitate a burette by using a syringe driver, which is a stepper motor and linear actuator to precisely administer titrant with a syringe. The motor will need to be connected to the PCB so it can be controlled through the microcontroller. This is a potential stepper motor we could use: Buy 17N19S1684MB-200RS Nema 17 Non-captive Linear Stepper Motor Actuator 48mm Stack 1.8 Deg 1.68A Lead 8mm/0.31496" Lead Screw 200mm Online - Oyostepper.com (https://www.oyostepper.com/goods-1162-Nema-17-Non-captive-Linear-Stepper-Motor-Actuator-48mm-Stack-168A-Lead-8mm031496-Length-200mm.html) which has 0.04 mm lead/step to allow us to compress the syringe exactly. The syringe will then be attached to a plastic tube with a pointed end to minimize drop size, thus further increasing precision on titrant dispense.
### (Stretch Goal) Subsystem 5: Display of Data with Graph
The main data output to user will be a live reading of the pH, but this stretch goal will display a common graph used in titrations is called a “titration curve”. If we can fit it in the budget and time constraints, we will add this functionality to display this graph.
Amazon.com: Treedix 3.5 inch TFT LCD Display 320 x 480 Color Screen Module Compatible with Arduino UNO R3 Mega2560 : Electronics (https://www.amazon.com/Treedix-Display-Screen-Arduino-Mega2560/dp/B0872S57HG?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A22NPL1KB8AOV0 )
An Arduino Uno will be used along with an LCD display to show the current pH of the solution. A live graph will be created using the Arduino Serial Plotter to visually show the live data from the pH sensors.

## Criterion For Success
(For safety with demos, we can do a food-safe vinegar titration to avoid any harmful chemicals)
- Primary Success: Repeat titration with only 0.5% deviation between measurements
- Secondary Success: Provide a decrease in 30% of time taken over a manual titration.

Autonomous Sailboat

Riley Baker, Arthur Liang, Lorenzo Rodriguez Perez

Autonomous Sailboat

Featured Project

# Autonomous Sailboat

Team Members:

- Riley Baker (rileymb3)

- Lorenzo Pérez (lr12)

- Arthur Liang (chianl2)

# Problem

WRSC (World Robotic Sailing Championship) is an autonomous sailing competition that aims at stimulating the development of autonomous marine robotics. In order to make autonomous sailing more accessible, some scholars have created a generic educational design. However, these models utilize expensive and scarce autopilot systems such as the Pixhawk Flight controller.

# Solution

The goal of this project is to make an affordable, user- friendly RC sailboat that can be used as a means of learning autonomous sailing on a smaller scale. The Autonomous Sailboat will have dual mode capability, allowing the operator to switch from manual to autonomous mode where the boat will maintain its current compass heading. The boat will transmit its sensor data back to base where the operator can use it to better the autonomous mode capability and keep track of the boat’s position in the water. Amateur sailors will benefit from the “return to base” functionality provided by the autonomous system.

# Solution Components

## On-board

### Sensors

Pixhawk - Connect GPS and compass sensors to microcontroller that allows for a stable state system within the autonomous mode. A shaft decoder that serves as a wind vane sensor that we plan to attach to the head of the mast to detect wind direction and speed. A compass/accelerometer sensor and GPS to detect the position of the boat and direction of travel.

### Actuators

2 servos - one winch servo that controls the orientation of the mainsail and one that controls that orientation of the rudder

### Communication devices

5 channel 2.4 GHz receiver - A receiver that will be used to select autonomous or manual mode and will trigger orders when in manual mode.

5 channel 2.4 GHz transmitter - A transmitter that will have the ability to switch between autonomous and manual mode. It will also transfer servos movements when in manual mode.

### Power

LiPo battery

## Ground control

Microcontroller - A microcontroller that records sensor output and servo settings for radio control and autonomous modes. Software on microcontroller processes the sensor input and determines the optimum rudder and sail winch servo settings needed to maintain a prescribed course for the given wind direction.

# Criterion For Success

1. Implement dual mode capability

2. Boat can maintain a given compass heading after being switched to autonomous mode and incorporates a “return to base” feature that returns the sailboat back to its starting position

3. Boat can record and transmit servo, sensor, and position data back to base

Project Videos