Project

# Title Team Members TA Documents Sponsor
56 Smart AC Units
Kevin Zhang
Vineeth Kalister
Xavier Oliva
Douglas Yu design_document1.docx
design_document2.pdf
final_paper1.pdf
proposal2.pdf
proposal1.pdf
# TEAM MEMBERS:

Kevin Zhang - kevinhz2
Vineeth Kalister - vkalis2
Xavier Oliva - xoliva2

# **PROBLEM:**
In the United States, about a third of homes lack a central air conditioning system. While some homes are in climates where they do not need an air conditioning solution, the vast majority of other homes rely on window units for their air conditioning. This is especially true in communities with older homes, such as New York City and Boston. Many older homes use “dumb” wall-mounted AC units that are inefficient and manually set. We want to target these homes and make them more efficient through “smart” AC control units. Although there exist “smart” wall-mounted units, these are often equipped with proprietary solutions that work with few systems, or are expensive devices to modulate the voltage going inside the AC unit without changing the settings of the unit. With our Smart AC Unit system, we believe that we can accomplish a more efficient and equitable experience for those with window unit ACs and ensure optimal ease of access as well as a lower power bill. As the central air conditioning market advances in the technology available to make the air conditioning experience easier, such advances and improvements are lacking in homes that do not have central air conditioning. While there are systems in the market that allow you to have your central air conditioning system interact with voice assistants or other AI services, window unit users are stuck with simple knobs and switches. The few smart devices that do interface with window units are typically proprietary designs that work with specific higher priced designs or are devices that simply modulate voltage going into the AC system.


# SOLUTION:
Our proposal is a multi-part system combining temperature sensors, servo motors, and central control units to allow for wall-mount ACs to be automatically controlled through an application on one’s smart device. The device will be able to latch on top of the knobs of a window unit AC and, with the help of the User Application available on their mobile device, be able to adjust the knobs remotely to the settings of the user’s choosing.
The main system relies on sensor units, control units, and mobile devices. The prototype device will be tested on a 5000 BTU Arctic King window air conditioner.

# SOLUTION COMPONENTS:
Air Conditioner System (Smart AC device)
## Power Unit
The Smart AC itself will need to be powered with enough voltage to be able to power the two motors responsible for turning the knobs on an 5,000 BTU Arctic King window air conditioner as well the temperature and air quality sensors.

## Sensor Unit

The Smart AC device will be equipped with a temperature sensor in order to read the temperature of the room, and thus, regulate the temperature to the temperature selected by the User Application. The Smart AC device will also be equipped with an air quality sensor which enables the air quality of the room to be read and communicated to the user through the User Application.

## Control Unit

The control unit of the Smart AC device system will be capable of changing the settings of both the temperature and cooling knobs of the Arctic King window air conditioner. If the temperature set by the User Application is higher or lower than that measured by the Sensor Unit, the Control Unit is responsible for adjusting the air conditioner settings to ensure that the room temperature stays constant.

** Mobile Device System (User Application)**
## UI Unit
The user applications contain all the necessary features to read the current room temperature, turn on/off the AC system, change and schedule temperatures, change fan speeds, etc.
## Control Unit
The user application will be able to communicate with the Smart AC device via bluetooth and/or Wi-Fi.

CRITERIA FOR SUCCESS:
- The AC Unit can be controlled and changed
- The sensor unit can accurately read the current room temperature
- Mobile Devices able to communicate with the AC System
- Change AC temperature whenever and wherever via one’s smart device
- Automatically set time ranges for AC use to increase the efficiency of the unit

Smart Frisbee

Ryan Moser, Blake Yerkes, James Younce

Smart Frisbee

Featured Project

The idea of this project would be to improve upon the 395 project ‘Smart Frisbee’ done by a group that included James Younce. The improvements would be to create a wristband with low power / short range RF capabilities that would be able to transmit a user ID to the frisbee, allowing the frisbee to know what player is holding it. Furthermore, the PCB from the 395 course would be used as a point of reference, but significantly redesigned in order to introduce the transceiver, a high accuracy GPS module, and any other parts that could be modified to decrease power consumption. The frisbee’s current sensors are a GPS module, and an MPU 6050, which houses an accelerometer and gyroscope.

The software of the system on the frisbee would be redesigned and optimized to record various statistics as well as improve gameplay tracking features for teams and individual players. These statistics could be player specific events such as the number of throws, number of catches, longest throw, fastest throw, most goals, etc.

The new hardware would improve the frisbee’s ability to properly moderate gameplay and improve “housekeeping”, such as ensuring that an interception by the other team in the end zone would not be counted as a score. Further improvements would be seen on the software side, as the frisbee in it’s current iteration will score as long as the frisbee was thrown over the endzone, and the only way to eliminate false goals is to press a button within a 10 second window after the goal.