Project

# Title Team Members TA Documents Sponsor
58 Automotive Window Icing Preventer for Cars
Jiwon Bae
Joon Song
Taseen Karim
Vishal Dayalan design_document2.pdf
final_paper1.pdf
photo1.HEIC
photo2.HEIC
presentation1.pdf
proposal2.pdf
video1.mp4
Team Members:
- Jiwon Bae (jiwonb2)
- JoonHyuk Song (js30)
- Taseen Karim (tkarim3)

# Problem

In colder climates, vehicle owners often face the challenge of ice formation on their vehicles. This ice accumulation can affect visibility, vehicle functionality, and overall safety. Removing ice manually can be time-consuming, labor-intensive, and sometimes ineffective, especially in severe weather conditions.
The motivation for the automotive icing preventer is to enhance safety, convenience, and efficiency for vehicle owners in cold climates. By preventing ice formation on vehicles, this solution aims to eliminate the need for manual de-icing, saving vehicle owners considerable time and effort, especially during early morning starts. Also, it ensures clear visibility and unobstructed vehicle operation, crucial for safe driving in winter conditions. Moreover, frequent scraping and chemical de-icers can damage a vehicle's exterior. A more gentle de-icing method can help preserve the vehicle's integrity.

# Solution

Our solution is to design an automotive heating system attached to the inside of the vehicle onto the windshield. The device will contain heating coils within a carefully selected burn-resistant material, heating the windshield from the inside to ultimately reduce the icing. The heating pad would utilize a temperature sensor and thermostat-like closed-loop feedback system controlled over a microcontroller, as well as an LED display which would give feedback to the users. Our device will also contain a small battery-powered unit that will deliver power to the sensors and activate/deactivate power to the coils based off of the sensor feedback.

# Solution Components

## Microcontroller
The microcontroller will be the control unit for the entire system. It would be connected to the temperature sensor, power supply, and the feedback to the users. We decided to use an Arduino microcontroller where we could easily monitor the exact temperature outside and specifically control the temperature of the heating pad. The control unit carefully detects the temperature of the windshield regularly and turns on the heating pad when the temperature of the outside of the windshield is well below freezing degrees. The windshield of a car typically endures a temperature of up to 100 degrees of directly applied heat before potentially cracking. Thus, for the heating pad, we are aiming for a temperature of 32-40 degrees(F) for the windshield, which is well over freezing degrees and would use less power as well. Consistently checking the temperature of the windshield and the heating pad, once the windshield reaches the capacity we determined (40 degrees), the heating pad will turn off.
The control unit also is responsible for outputting feedback to the users on the LED display. It would contain the indication of whether the heating pad is on or off. The LED would light green if the heating pad is on and would turn off when the heating pad is off.

## Power Unit
The power supply unit will utilize a variable voltage regulator to adjust power from 30W to 200W to the heating coils, with a fixed voltage of 3.3V to sensors and microcontroller. We will need long-lasting and rechargeable batteries (LiPo batteries are most ideal), along with a battery holder.

## Sensor Unit
The sensor unit will utilize some sort of temperature sensing technology (thermocouple, RTD, thermistors, this is TBD) and be integrated into a closed-loop feedback system that is linked to the power unit. Direct power to the heating coils will be fully determined by the sensor unit. If the sensor unit detects temperatures below freezing, it will queue the power unit to deliver power directly to the coils. If the sensor unit detects temperatures above freezing, the heating coils will stop receiving power. The sensor unit will be receiving low fixed voltage at all times.



# Criterion For Success

For the automotive icing preventer project, success can be defined by meeting the following specific and measurable goals:

Surface Temperature Regulation: The system maintains the vehicle's surface temperature consistently above 0°C (32°F), regardless of external weather conditions. This is verified by sensor data indicating that the surface temperature never falls below the freezing point during operation.

Power Regulation: The coils will only receive power when temperatures fall below freezing point. When temperatures are ideal, the coils will remain off and a constant voltage will be relayed to the microcontroller and sensor units to continue monitoring temperature fluctuations.

Feedback: We will incorporate some form of display to show whether or not the coils are receiving power as well as battery percentage. We will also have a variable voltage regulator display showing the amount of supplied voltage.

Habit-Forming Toothbrush Stand

John Kim, Quinn Palanca, Rahul Vasanth

Habit-Forming Toothbrush Stand

Featured Project

I spoke with a TA that approved this idea during office hours today, and they said I should submit it as a project proposal.

# Habit-Forming Toothbrush Stand

Team Members:

- Rahul Vasanth (rvasant2)

- Quinn Andrew Palanca (qpalanc2)

- John Jung-Yoon Kim (johnjk5)

# Problem

There are few habits as impactful as good dental hygiene. Brushing teeth in the morning and night can significantly improve health outcomes. Many struggle with forming and maintaining this habit. Parents might have a difficult time getting children to brush in the morning and before sleep while homeless shelter staff, rehab facility staff, and really, anyone looking to develop and track this habit may want a non-intrusive, privacy-preserving method to develop and maintain the practice of brushing their teeth in the morning. Keeping track of this information and but not storing it permanently through a mobile application is something that does not exist on the market. A small nudge is needed to keep kids, teenagers, and adults of all ages aware and mindful about their brushing habits. Additionally, many tend to zone out while brushing their teeth because they are half asleep and have no idea how long they are brushing.

# Solution

Our solution is catered toward electric toothbrushes. Unlike specific toothbrush brands that come with mobile applications, our solution applies to all electric toothbrushes, preserves privacy, and reduces screen time. We will implement a habit-forming toothbrush stand with a microcontroller, sensors, and a simple LED display that houses the electric toothbrush. A band of sensors will be wrapped around the base of the toothbrush. Lifting the toothbrush from the stand, turning it on, and starting to brush displays a timer that counts seconds up to ten minutes. This solves the problem of brushing too quickly or losing track of time and brushing for too long. Additionally, the display will provide a scorecard for brushing, with 14 values coming from (morning, night) x (6daysago, 5daysago, . . . , today) for a "record" of one week and 14 possible instances of brushing. This will augment the user's awareness of any new trends, and potentially help parents, their children, and other use cases outlined above. We specifically store just one week of data as the goal is habit formation and not permanent storage of potentially sensitive health information in the cloud.

# Solution Components

## Subsystem 1 - Sensor Band

The sensor band will contain a Bluetooth/Wireless Accelerometer and Gyroscope, or Accelerometer, IR sensor (to determine height lifted above sink), Bluetooth/Wireless connection to the microcontroller. This will allow us to determine if the electric toothbrush has been turned on. We will experiment with the overall angle, but knowing whether the toothbrush is parallel to the ground, or is lifted at a certain height above the sink will provide additional validation. These outputs need to be communicated wirelessly to the habit-forming toothbrush stand.

Possibilities: https://www.amazon.com/Accelerometer-Acceleration-Gyroscope-Electronic-Magnetometer/dp/B07GBRTB5K/ref=sr_1_12?keywords=wireless+accelerometer&qid=1643675559&sr=8-12 and individual sensors which we are exploring on Digikey and PCB Piezotronics as well.

## Subsystem 2 - Toothbrush Base/Stand and Display

The toothbrush stand will have a pressure sensor to determine when the toothbrush is lifted from the stand (alternatively, we may also add on an IR sensor), a microcontroller with Bluetooth capability, and a control unit to process sensor outputs as well as an LED display which will be set based on the current state. Additionally, the stand will need an internal clock to distinguish between morning and evening and mark states accordingly. The majority of sensors are powered by 3.3V - 5V. If we use a battery, we may include an additional button to power on the display (or just have it turn on when the pressure sensor / IR sensor output confirms the toothbrush has been lifted, or have the device plug into an outlet.

# Criterion For Success

1. When the user lifts the toothbrush from the stan and it begins to vibrate (signaling the toothbrush is on), the brushing timer begins and is displayed.

2. After at least two minutes have passed and the toothbrush is set back on the stand, the display correctly marks the current day and period (morning or evening).

3. Track record over current and previous days and the overall weekly record is accurately maintained. At the start of a new day, the record is shifted appropriately.

Project Videos