Project

# Title Team Members TA Documents Sponsor
43 Kitchen Dry Ingredient Tracker
Anju Jain
Nynika Badam
Sanjana Kumar
Vishal Dayalan design_document1.pdf
final_paper1.pdf
photo1.jpg
photo2.heic
photo3.heic
presentation1.pdf
proposal1.pdf
video
**Kitchen Dry Ingredient Tracker**

Team Members:
- Anju Jain (anjuyj2)
- Nynika Badam (nbadam2)
- Sanjana Kumar (spkumar4)

**Problem**

In our day to day lives, it's hard to keep track of ingredients in our kitchen and make sure we replenish it often. In order to remedy this, we propose a kitchen dry ingredient tracker.

**Solution**

Our system is designed to track and communicate with users about their ingredient necessities. Each individual ingredient tracker can be tailored to different lower weight threshold measurements.
Our system will use an app to maintain a digital grocery list. If an ingredient is running low, our system will add the ingredient to a digital grocery list. We also will have the option of adding the ingredient to the user's choice of online shopping cart. Users can remove ingredients' names from the list after purchase. ​​If a user is outside and is close to a grocery store (500 m), mobile app notification will be sent to the user's phone to notify them about necessary ingredient/s.

**Solution Components**

## Subsystem 1: LED
LED lights are placed at each ingredient and will light up when a certain percentage of total ingredients are low to indicate a more urgent grocery run.
Components: LEDs (from previous semester lab kits) or LED strip (12V-NB-CW-01M), LED Driver

## Subsystem 2: Weight Sensor
Our system will have 3 weight sensors to track 3 different ingredients. This can be extended for a system with more ingredients.
Each weight sensor will have a button to indicate if that weight sensor is active.
The weight sensor will be used to make sure the dry ingredient has not gone below the minimum weight limit.
Components: weight sensor Alpha (Taiwan) MF01A-N-221-A05, button (from previous lab kits)

## Subsystem 3: Microcontroller
Our system will be powered by plugging the microcontroller to the wall.
It will keep constant track of weight fluctuations for ingredients and send the data to the app.
It will be responsible for controlling individual ingredient’s LEDs.
Components: Microcontroller

## Subsystem 4: App
We will build an Apple based mobile app to provide connectivity between the user and the system.
User specifies which weight sensor station corresponds to what ingredient and its lower weight threshold (grams).
The app will maintain a digital grocery list.
If an ingredient is running low, our system will add the ingredient to a digital grocery list.
We also will have the option of adding the ingredient to the user's choice of online shopping cart.
Users can remove ingredients' names from the list after purchase.
​​If a user is outside and is close to a grocery store (500 m), mobile app notification will be sent to the user's phone to notify them about necessary ingredient/s.

# Criterion For Success
1. System should be able to measure changes in ingredient weights
- Add/Remove ingredient from grocery list/ online store shopping cart
2. Indicate when an ingredient needs replenishing through app
- mobile app should add ingredient name to digital shopping list
- Or add ingredient to an online store shopping cart
3. When many ingredients (2 out of 3) are low, LED lights should turn on around these ingredients
4. If the user’s phone is 500 m or less from a grocery store, mobile app should send reminder to visit the store if there are ingredients in the digital grocery list (if the user chose not to go the online shopping route)

Amphibious Spherical Explorer

Kaiwen Chen, Junhao Su, Zhong Tan

Amphibious Spherical Explorer

Featured Project

The amphibious spherical explorer (ASE) is a spherical robot for home monitoring, outdoor adventure or hazardous environment surveillance. Due to the unique shape of the robot, ASE can travel across land, dessert, swamp or even water by itself, or be casted by other devices (e.g. slingshot) to the mission area. ASE has a motion-sensing system based on Inertial Measurement Unit (IMU) and rotary magnetic encoder, which allows the internal controller to adjust its speed and attitude properly. The well-designed control system makes the robot free of visible wobbliness when it is taking actions like acceleration, deceleration, turning and rest. ASE is also a platform for research on control system design. The parameters of the internal controller can be assigned by an external control panel in computer based on MATLAB Graphic User Interface (GUI) which communicates with the robot via a WiFi network generated by the robot. The response of the robot can be recorded and sent back to the control panel for further analysis. This project is completely open-sourced. People who are interested in the robot can continue this project for more interesting features, such as adding camera for real-time surveillance, or controller design based on machine learning.

Project Videos