Project

# Title Team Members TA Documents Sponsor
23 Retrofitting an iMac G3 Mouse to be Bluetooth-Enabled for Use in the 21st Century
Saif Kazmi
Savannah Moon Pagan
Sebastian Carrera
Jialiang Zhang final_paper1.pdf
other1.pdf
presentation1.pdf
proposal1.pdf
proposal2.pdf
# Retrofitting an iMac G3 Mouse to be Bluetooth-Enabled for Use in the 21st Century

Team Members:
- Savannah Pagan (spagan6)
- Saif Kazmi (skazmi21)
- Sebastian Carrera (carrera9)

# Problem
Describe the problem you want to solve and motivate the need.

Disposal of outdated technology contributes to approximately 50 million tons of e-waste annually, leading to environmental concerns. Our project aims to demonstrate a sustainable approach to repurposing technology from the past, diverting it from landfills and back into the consumers’ hands.

Specifically, by modernizing old devices, like updating the original iMac G3 to modern computing standards, as well as its original peripherals, such as the mouse included with the device, we not only extend the lifespan of these devices but also preserve their original creative style and design intent. This initiative will align vintage technology with modern computing needs, ultimately fostering a more eco-friendly and innovative technological landscape.

# Solution

Our project aims to replace legacy hardware within the 1998 iMac G3 by utilizing the internal components of a newer Mac Mini computer. The new components will be mounted inside the original iMac shell to give new life to this outdated machine. The original CRT screen will be replaced with a newer LCD screen. The original speakers and disc drive of the iMac will be re-utilized as well, and the ports will be upgraded to the relevant modern port types.

We also aim to update the original Apple USB mouse included with the device by using modern optical sensors and bluetooth to replace the legacy hardware. A modern switch of higher quality and durability will replace the original switch used for the mouse button and rather than physical rollers interacting with a rubberized ball on the bottom of the mouse, we will use an optical sensor to detect mouse movement. The user can customize the sensitivity of the mouse, a feature unavailable on the original hardware. The USB connection will be replaced with bluetooth to communicate with a computer. Due to its wireless nature, the mouse will be battery powered. The mouse can detect when it is not being used and automatically shut off as a battery saving measure, similar to modern bluetooth mice.

# Solution Components
2014 Mac Mini - 8GB RAM, 1 TB of storage

The Mac Mini will be utilized to update the iMac G3 to modern computing standards.

Mouse button

An Omron D2LS-21 switch will be used for the mouse button. It will be placed strategically on our PCB to avoid or minimize modification of the original mouse housing.
https://www.mouser.com/ProductDetail/Omron-Electronics/D2LS-2110M?qs=OcgtsXO%252B3gvFuywVVfHEYw%3D%3D

Optical sensor

A PixArt PMW-3389 or PMW-3360 optical sensor will be used to detect mouse movement. These sensors are commonly used in modern mice. They can be purchased separately, or salvaged from an extremely wide variety of mice.
https://www.tindie.com/products/citizenjoe/pmw3389-motion-sensor/

Bluetooth connectivity/Microcontroller

An ESP32 microcontroller will be used to communicate with the computer over Bluetooth. Additionally, it can process sensor inputs and determine whether the mouse is idle.

Battery/Charging

Our goal is to use a rechargeable lithium ion battery. If space permits, we will use a USB-C connector for charging due to its ubiquity. If this proves to be impractical due to space constraints, we will use a barrel jack, though this is a last resort.

# Criterion For Success

The iMac powers on
The iMac LCD display turns on
The iMac can connect to WiFi
The iMac can function as well as a modern laptop, meaning that it can run multiple applications at once, as well as perform actions within these applications
The iMac ports function
The iMac has Bluetooth connectivity functionality
The mouse can connect to a modern computer with bluetooth
The mouse can provide clicking functions to a modern computer
The mouse can accurately move a cursor on a modern computer
Disregarding the missing USB cable, the mouse must be visually unchanged from the original product
The mouse must last for ??? hours of use (to be determined depending on type of batteries chosen to work with, at least a few hours of charge)

The Marching Band Assistant

Wynter Chen, Alyssa Louise Licudine, Prashant Shankar

The Marching Band Assistant

Featured Project

NetID/Names

wynterc2 (Wynter Chen), alyssal3 (Alyssa Licudine), shankar7 (Prashant Shankar)

Problem

Drum majors lead and conduct marching bands. One of their main jobs is to maintain tempo for the musicians by moving their hands in specific patterns. However, many drum majors, especially high school students, need to learn how to conduct specific tempos off the top of their head and maintain a consistent tempo without assistance for performances. Even those with musical experience have difficulty knowing for certain what tempo they're conducting without a metronome.

Solution Overview

Our project consists of an arm attachment that aids drum major conducting. The attachment contains an accelerometer that helps determine the tempo in beats per minute via hand movement. A display shows the beats per minute, which allows the drum major to adjust their speed as necessary in real time. The microcontroller data is wirelessly transmitted, and a program can be downloaded that not only visualizes the data in real-time, but provides an option to save recorded data for later. There is also a convenient charging port for the device.

This project is a unique invention that aims to help marching bands. There have been previous projects and inventions that have also digitized the conducting experience, such as the Digital Conducting Baton from Spring 2015. However, these have been in the form of a baton rather than a glove, and are used to alter music files as opposed to providing feedback. Additionally, orchestra conductors use very delicate motions with a baton, while drum majors create large, sharper motions with their arms; thus, we believed that an arm attachment was better suited for marching band usage. Unlike other applications that only integrate digital instruments, this project seeks to assist live performers.

Link to RFA: https://courses.grainger.illinois.edu/ece445/pace/view-topic.asp?id=37939

Project Videos