Design Document Check

updated Fa 2020

Description

The Design Document Check (DDC) is intended to aid your team as it prepares its Design Document. The DDC focuses narrowly upon providing feedback on the preparation of historically problematic Design Document elements. If these elements fall short during your Design Review the following week, precious time is lost.

What are the course staff looking for? i) Evidence that the overall idea of the design is sound; ii) A check of a small subset of required components indicates that the project is on the right track.

Below is a checklist of things to have ready for the design document check. Refer to the design document page and grading rubric for a full description of each item.
  1. Introduction
    1. Start with a brief summary (30 sec) or elevator pitch following this template:

      I will build ___A___ (my core product) for ___B___ (my core customer: the person who pays my company or uses the product).

      My customer has a problem ___C___ (describe the problem your customer has)

      My product solves my customer’s problem by ___D___ (how do you solve the problem?)

    2. Be expected to explain further what the problem is, what’s your idea to solve it, and why your idea is novel.
  2. Visual Aid
  3. High-level Requirements
    1. HL requirements are derived from the problem you are trying to solve (put yourself into the customer's shoes). HL requirements should be the essential features that your customers/users really care about. These features distinguish your product from others (e.g. ones available in the market or previous 445 designs). Be abstract (no tech details, you may come up with different design due to other constraints but still solve this problem), quantifiable (no words like continuously, accurately, etc), and unambiguous. HL&RV slides(P.5) has a good example.
    2. We will look at your HL requirements and check if they are what your customers/users really care about. Be prepared to defend your requirements, so that when you get challenged, you can give a well thought out explanation.
  4. Block Diagram
    1. Block Diagram slides
    2. We will check whether this design appears to solve your problem. 
    3. We will check if formatting is clear (lines, legends, etc). Extra caution is needed as students often make mistakes here (but you shouldn't!).
  5. Requirements & Verification Tables
    1. HL&RV slides: from P. 1-17
    2. Block Module Requirements: Break down your HL requirements into block level requirements. These are the requirements in the RV table (they are not the specs of the parts you have chosen).
    3. Verification: A step-by-step approach allows another 445 student to test if the BL requirement is satisfied. This is like an instruction for your module's unit test (with some surrounding dummy modules, a.k.a, mock object(s)
    4. We will review one piece of it. Show us an important one.
  6. Plots
  7. Circuit Schematics
  8. Tolerance Analysis
    1. Identify an important part that you need to perform some quantitative analysis on. This part should have quantitative values critical to the design and require you do calculations and make trade-offs in order to achieve your best design.
    2. Common mistake: Many students do calculations for tangential parts to pad the space.
  9. Safety & Ethics
  10. Citations

During the DDC, your team will have 5-8 minutes to present an example of each of these elements. Expect to share the 30-minute DDC session with two other design teams. Come prepared to learn from their work - both the good and bad.

Your task is to prepare and upload the above elements in a single PDF document to the course website. During your DDC session, you will present directly from your submission, which will be projected for all to see.

The focus of the DDC is not on the details of your design but rather on the details of your formatting; the design of your project will be covered in-depth during the Design Review. Organize your submission in accordance with the Design Document guidance and the example Design Document.

The course staff will focus on providing feedback on the format of your sample DDC elements - the very limited available time will not afford detailed feedback on your design. Please go to office hours for further guidance.

Requirements and Grading

Upload your DDC submission to your project page on PACE (i.e. ECE 445 web board) before arriving at your DDC session.

As in your Design Document, number pages after the title page in your DDC submission.

Any material obtained from websites, books, journal articles, or other sources not originally generated by the project team must be appropriately attributed with properly cited sources in a standardized style such as IEEE, ACM, APA, or MLA.

The course staff at the DDC will assign individual grades to each student based on:

Submission and Deadlines

Sign-up for the Design Document Check on the ECE 445 course website - specifically at the Sign up for Team Presentation item on the PACE tab. Sign-up will open the Monday one week prior to the DDCs.

Upload your DDC submission (.pdf format) to the ECE 445 course website before your DDC session - specifically at the My Project item on the PACE tab.

While you will not complete peer reviews during the DDC, you are expected to actively contribute to the discussion.

Tech must-know and FAQ for design

Here is the link of "Tech must-know and FAQ for design" which is accessible after logging into g.illinois.edu.

Over semesters, ECE445 course staff have encountered repeated mistakes from students. The document above is designed to provide students with the essential knowledge needed in order to have a good design. Spending 5 min reading it might save you 15 hours later. Also, there might be some quiz questions in your DDC or Design Review. Please help us improve this document. We value your feedback!

GYMplement

Srinija Kakumanu, Justin Naal, Danny Rymut

Featured Project

**Problem:** When working out at home, without a trainer, it’s hard to maintain good form. Working out without good form over time can lead to injury and strain.

**Solution:** A mat to use during at-home workouts that will give feedback on your form while you're performing a variety of bodyweight exercises (multiple pushup variations, squats, lunges,) by analyzing pressure distributions and placement.

**Solution Components:**

**Subsystem 1: Mat**

- This will be built using Velostat.

- The mat will receive pressure inputs from the user.

- Velostat is able to measure pressure because it is a piezoresistive material and the more it is compressed the lower the resistance becomes. By tracking pressure distribution it will be able to analyze certain aspects of the form and provide feedback.

- Additionally, it can assist in tracking reps for certain exercises.

- The mat would also use an ultrasonic range sensor. This would be used to track reps for exercises, such as pushups and squats, where the pressure placement on the mat may not change making it difficult for the pressure sensors to track.

- The mat will not be big enough to put both feet and hands on it. Instead when you are doing pushups you would just be putting your hands on it

**Subsystem 2: Power**

- Use a portable battery back to power the mat and data transmitter subsystems.

**Subsystem 3: Data transmitter**

- Information collected from the pressure sensors in the mat will be sent to the mobile app via Bluetooth. The data will be sent to the user’s phone so that we can help the user see if the exercise is being performed safely and correctly.

**Subsystem 4: Mobile App**

- When the user first gets the mat they will be asked to perform all the supported exercises and put it their height and weight in order to calibrate the mat.

- This is where the user would build their circuit of exercises and see feedback on their performance.

- How pressure will indicate good/bad form: in the case of squats, there would be two nonzero pressure readings and if the readings are not identical then we know the user is putting too much weight on one side. This indicates bad form. We will use similar comparisons for other moves

- The most important functions of this subsystem are to store the calibration data, give the user the ability to look at their performances, build out exercise circuits and set/get reminders to work out

**Criterion for Success**

- User Interface is clear and easy to use.

- Be able to accurately and consistently track the repetitions of each exercise.

- Sensors provide data that is detailed/accurate enough to create beneficial feedback for the user

**Challenges**

- Designing a circuit using velostat will be challenging because there are limited resources available that provide instruction on how to use it.

- We must also design a custom PCB that is able to store the sensor readings and transmit the data to the phone.