The worksheet is concerned with the design of the loop-the-loop for a roller coaster system.

Old loop design: The first generation of loops was circular, as shown below.

New loop design: The modern loop has evolved into the tear-drop track shape pictured below.

1. Briefly predict what issues might arise due to a circular loop, and how a tear-drop loop might resolve those problems.
Circular Track

The first generation of loops were circular, as illustrated on Page 1. Although not strictly accurate, we’ll assume for this section that the roller coaster train maintains a **constant speed** as it travels along the track.

2. For the circular loop, plot the curvature κ of the track as a function of s, the total distance covered. Label the important points on the vertical axis in terms of the loop radius R. Note that s_1 and s_2 denote the point where the train enters and leaves the loop, respectively.

3. Plot the tangential a_t and normal a_n component of the train’s acceleration $\vec{a} = a_t \hat{e}_t + a_n \hat{e}_n$ as a function of s, the total distance covered. Label the important points on the vertical axis in terms of the train speed v and the loop radius R.

4. The circular loop design, popular in the earliest inversion roller coasters, was in fact responsible for many broken bones and neck injuries. Why do you think this may have occurred?
5. Now plot the a_z (upwards, \hat{k}) component of the train’s acceleration as a function of s, the total distance covered. Label all significant points on the vertical axis.

\begin{center}
\begin{tikzpicture}
\draw[->,thick] (0,0) -- (4,0) node[right] {s};
\draw[->,thick] (0,-1) -- (0,1) node[above] {a_z};
\draw (0,0) -- (1,0) node[below] {s_1};
\draw (1,0) -- (2,0) node[below] {s_2};
\end{tikzpicture}
\end{center}

\textbf{Tear-Drop Track}

The modern loop has evolved into the teardrop-like shape as exhibited by the roller coaster on Page 1. Also, we’ll assume for this section that the roller coaster train maintains a constant speed.

6. To reduce risk of injury, the tear-drop shape for the loop shown below is now commonly employed. How do you think this shape helps to give passengers a smoother ride?

\begin{center}
\includegraphics[width=0.5\textwidth]{tear-drop-track}
\end{center}

7. A curve for which the curvature varies linearly with the distance covered is known as a clothoid or Euler spiral. The tear-drop shape above closely resembles two symmetric clothoids, in which the curvature increases linearly with s after the train enters the curve, reaches a maximum value of $1/R$ at the top of the curve, and then linearly decreases back to zero when the train exits the loop. For such a loop, plot the curvature κ as a function of s. Note that s_A and s_E denote the point where the train enters and leaves the loop (as illustrated on the next page).

\begin{center}
\begin{tikzpicture}
\draw[->,thick] (0,0) -- (4,0) node[right] {s};
\draw[->,thick] (0,-1) -- (0,1) node[above] {κ};
\draw (0,0) -- (1,0) node[below] {s_κ};
\draw (1,0) -- (2,0) node[below] {s_e};
\end{tikzpicture}
\end{center}
8. For the tear drop loop, sketch the normal and tangential acceleration (labeling each) at the five points demarked below.

9. For the tear drop loop, plot the tangential a_t and normal a_n component of the train’s acceleration $\vec{a} = a_t \hat{e}_t + a_n \hat{e}_n$ as a function of s, the total distance covered. Label the important points on the vertical axis in terms of the train speed v and the radius or curvature at the top of the loop R.

10. Now plot the a_z (upwards, \hat{k}) component of the train’s acceleration on the tear-drop loop as a function of s, the total distance covered. Where is the acceleration in the \hat{k}–direction felt by the passengers largest? How large is this?
Bonus: Energy Analysis

11. As you have likely experienced on roller coasters, the speed does not stay constant as you traverse the loop. Instead, the speed decreases as you travel up the curve and increases as you move back down the track. Use conservation of energy to calculate the expected speed at the top of a 25 m tall loop when the initial speed is 10 m/s, where kinetic energy is $KE = \frac{1}{2}mv^2$ and potential energy is $PE = mgh$.

12. Based on your energy analysis, is constant speed a reasonable assumption? How would your analysis in the first two sections change if the velocity becomes dependent on track position?

13. What other physics would you include to make your analysis even more accurate?