

Announcement!! From
Extending the efforts of Domestic Violence Awareness Month, INNER VOICES Social Issues Theatre presents:

 one
212
 students:

Each actor gives voice to a different story, bringing a deeper understanding of the dynamics and impacts of intimate partner violence.

A discussion follows, offering further insight into the complex issues surrounding intimate partner violence.

Channing Murray Foundation 1209 W. Oregon Street, Urban Wednesday, November 29, 8:00 p.m.

Armory Free Theatre room 160 Armory, Champaign
Thursday, November 30, 8:00 p.m.
The Women's Resources Center 616 East Green Street., Suite 202 , Champaign Wednesday, December 6, 8:00 p.m.

Sherman Hall
909 S. Fifth Street, Champaign Thursday, December 7, 8:00 p.m.
free and open to the public
contact 217-244-0212 or innervoices@illinois.edu
This event is sponsored in part by The Women's Resources Center INNER VOICES Social Issues Theatre is co-sponsored by the Illinois Theatre Department. counselingcenter.illinois.edu

Planar Equations of Motion

$$
\text { simplified }\left\{\begin{array}{l}
m \ddot{x}_{c}=F_{\alpha}^{\text {tot }} \\
m \ddot{y}_{c}=F_{y}^{\text {tot }} \\
I_{c, \hat{k}} \ddot{\theta}=M_{c, z}^{\text {tot }}=\vec{M}^{\text {tot }} \cdot \hat{k}
\end{array}\right.
$$

Derivation of equations: trans:

$$
\begin{aligned}
& \text { Trans: } \\
& \text { sot: }
\end{aligned} \quad \begin{aligned}
& \vec{r}_{c} \\
& \vec{H}_{c}
\end{aligned}=\vec{M}^{\text {tot }}=
$$

translational: clear since $\ddot{z} \equiv 0 . \quad \dot{z} \equiv 0$
rotational: want to chow $\dot{H}_{c}=\vec{M}^{\text {tot }}$ reduces to
$I_{c, \hat{k}} \ddot{\theta}=M_{c, z}^{\text {tot }}$ in the planar case.

angular momentum: $\vec{H}_{c}=\int \stackrel{\rightharpoonup}{r} \times \stackrel{\rightharpoonup}{v} d m$
We know that $\vec{v}=\vec{v}_{c}+\vec{\omega} \times \vec{v}$

$$
\begin{aligned}
& \vec{H}_{c}=\int_{\text {body }} \vec{r} x\left(\vec{v}_{c}+\vec{\omega} \times \vec{r}\right) d m \\
& \left.\vec{H}_{c}=\int_{\text {body }} \vec{r} \times \vec{\rightharpoonup}+d m+\int_{b=r}+\vec{\rightharpoonup} \times \vec{r}\right) d m
\end{aligned}
$$

Our planar motion assumption means that $\vec{\omega}=\omega \hat{k}$

$$
\text { let's write } \vec{r}=a \hat{\imath}+b \hat{\jmath}+c \hat{k}
$$

$$
\begin{aligned}
\vec{\omega} \times \vec{r} & =\omega \hat{k} \times(a \hat{\imath}+b \hat{\jmath}+c \hat{k})=\omega a \hat{\jmath}-\omega b \hat{c} \\
\vec{\Gamma} \times(\vec{\omega} \times \vec{r}) & =(a \hat{\imath}+b \hat{\jmath}+c \hat{k}) \times(\omega a \hat{\jmath}-\omega b \hat{\imath}) \\
& =\underbrace{\omega}_{\omega\left(a^{2}+b^{2}\right) \hat{k}}+\omega \vec{k} \hat{k}-\omega a c \hat{c}-\omega b c \hat{\jmath}
\end{aligned}
$$

We know that $\stackrel{\rightharpoonup}{H}_{c}=\vec{M}_{\underset{\sim}{M}}^{\text {net }}$ moments about

$$
\begin{aligned}
& I_{z z} \dot{\omega}=\stackrel{\rightharpoonup}{M}^{\text {net }} \cdot \hat{k} \\
& I_{z z} \ddot{\theta}=M_{c, \hat{k}}^{n e t}
\end{aligned}
$$

Principle of Work and Energy

$$
W=\Delta T
$$

work done $=$ change change in kinetic in K.E. energy T.

$$
\text { Total energy }=\text { kinetic }+ \text { potential }
$$

$$
E=T+V \vec{F}_{2}
$$

System of particles:

$$
\begin{gathered}
\text { es: } m_{1} \xrightarrow[m_{2}]{m_{1}} \overrightarrow{v_{2}} \\
\stackrel{\rightharpoonup}{v_{1}} \xrightarrow[m_{2}]{\vec{F}_{1}}\left\{\begin{array}{l}
\overrightarrow{v_{3}} \\
m_{3} \\
\vec{F}_{3}
\end{array}\right.
\end{gathered}
$$

kinetic energy if single part:

$$
T=\frac{m}{2}\|\stackrel{\rightharpoonup}{v}\|^{2}
$$

Let's relate to work:

$$
\begin{aligned}
& \frac{d T}{d t}=\frac{d}{d t}\left\{\frac{m}{2} \vec{v} \cdot \vec{v}\right\}=\frac{m}{2}\{\vec{v} \vec{v}+\vec{v} \cdot \dot{\vec{v}}\} \\
& =(m \stackrel{\rightharpoonup}{v}) \vec{v}=\stackrel{\rightharpoonup}{F} \cdot \vec{v} \sigma \text { rate of work } \\
& \text { or poses. } \\
& \left.\int_{t_{0}}^{t_{1}} \frac{d T}{d t} d t=\int_{t_{0}}^{t_{1}} \stackrel{\rightharpoonup}{F} \cdot \vec{v} d t\right)^{2} d \vec{r} \quad \vec{v}=\frac{d \vec{r}}{d t}
\end{aligned}
$$

recognize as the work

$$
T\left(t_{1}\right)-T\left(t_{0}\right)=\int_{\text {path }}^{\vec{F} \cdot d \vec{r} \quad \begin{array}{l}
\text { recognize as the work } \\
\text { done on the particle moving } \\
\text { dang the puth from } r\left(t_{0}\right)
\end{array}} \begin{aligned}
& \text { to ret. }) .
\end{aligned}
$$

System kinetic energy $=\sum_{\text {all particles }} \frac{m_{i}}{2} v_{i}^{2}$
Rigid Body Case
K.E. of elemat

$$
=\frac{d w}{2} v^{2}
$$

As a limit letting the element size $\Rightarrow 0$:

$$
\begin{aligned}
T & =\frac{1}{2}\left\{\begin{array}{l}
\|\vec{v}\|^{2} d m \\
\\
\end{array}=\frac{1}{2} \int_{\operatorname{cod}_{c} \|^{2}=\vec{a} \cdot \vec{a}}\left\|_{\vec{a}} \vec{v}_{c}+\vec{\omega} x \vec{r}\right\|^{2} d m\right.
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{1}{2} \int\left\|\vec{v}_{c}+\vec{w} \times \vec{r}\right\|_{\{\vec{c} \cdot(\vec{a} \times \vec{b})=(\vec{c} \times \vec{a}) \cdot b]} \quad(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b}) \\
& \begin{array}{l}
(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b}) \\
\|\vec{a}\|^{2}+\underbrace{\overrightarrow{\vec{c} \cdot \vec{a}}+\vec{a} \cdot \vec{b}}_{2 \vec{a} \cdot \vec{b}}+\|\vec{b}\|^{2}
\end{array} \\
& =\frac{1}{2} \int\left\|\vec{v}_{c}\right\|^{2} d m+\int \frac{\vec{v}_{c}-(\vec{\omega} \times r)}{\left(\vec{v}_{c} \times \vec{\omega}\right) \cdot \vec{r}} d m 0 \\
& +\frac{1}{2} \int \| \underline{\vec{\omega} \times \vec{r} \| d m} \quad j \int \vec{v}_{2}-(\vec{\omega} \times r) d m \\
& =\frac{m}{2}\left\|\vec{v}_{c}\right\|^{2}+\frac{1}{2} \int\|\hat{\omega} \times(a \hat{\imath}+b \hat{\jmath})\|^{2} d m \\
& =\frac{m}{2}\|\vec{v} c\|^{2}+\frac{\omega^{2}}{2} \int \underbrace{\|a \hat{\jmath}-b \hat{b}\|^{2}}_{a^{2}+b^{2}} d m \\
& =\left(v_{c} \times \vec{\omega}\right) \cdot \int \stackrel{\rightharpoonup}{\rightharpoonup}+m \\
& T=\frac{m}{2}\left\|\vec{v}_{c}\right\|^{2}+\frac{I_{c}}{2} \omega_{R}^{2} \\
& \text { trans. Kinetic }
\end{aligned}
$$

We can also express T writ the instantaneous cent of zero velocity Q.

$$
\begin{aligned}
&=\frac{\vec{r}_{Q C}}{2} \tau_{c}^{2}+\frac{I_{C}}{2} \omega^{2} \\
&=\frac{m}{2}\left|r_{Q C} \omega\right|^{2}+\frac{I_{c}}{2} \omega^{2}=\frac{1}{2}\left(m r_{Q C}^{2}+I_{C}\right) \omega^{2} \\
&=\frac{\left.r_{C}\right|^{2}=\left|r_{Q C} \omega\right|^{2}}{2} \omega^{2}
\end{aligned}
$$

example: rolling cylinder without slipping.

$$
\begin{aligned}
& T=\frac{m}{2} v_{c}^{2}+\frac{I_{c}}{2} \omega^{2} \quad|\omega|=\left|\frac{v_{c}}{R}\right| \\
& =\underbrace{\frac{m}{2} v_{c}^{2}}+\underbrace{\frac{1}{2}\left(\frac{m ⿻^{2}}{2}\right)\left(\frac{v_{c}}{q}\right)^{2}}=\frac{3}{4} m v_{c}^{2} \\
& \frac{2}{3} \operatorname{tans} \frac{1}{3} \text { rot }
\end{aligned}
$$

