

Motions in the Plane Ous equations of motion for 3D sigid body are: α Fret translational: Pe=mrc= net $\vec{H}_{c} = N$ rotational : translational: mxc = C03 2020 The rotational dynamics in 3D are more complex, and use not decoupted in this way. If Planar case: EOM become: MXc = Fnet (Kesye) trans: myc = Firet = { Mc . k I=22 0 = M (1.7 rot: I q is the rationation about

Crample:
$$\vec{F} = horizontal force$$

If $\vec{F} = horizontal force$
If $\vec{F} = first a sphere rolling
on a flat subject
with friction coefficient on a flat subject
with friction coefficient on a flat subject
of \vec{F} is no slipping.
FIBD: $\vec{F} = \vec{F} = \vec{F} = \vec{F}$
FIBD: $\vec{F} = \vec{F} = \vec{F} = \vec{F}$
 $\vec{F} = \vec{F} = \vec{F} = \vec{F}$
 $\vec{F} = \vec{F} = \vec{F} = \vec{F} = \vec{F}$
 $\vec{F} = \vec{F} =$$

$$(F_{+}) = \frac{3}{4} F$$
At max force; i.e., any bigger force would cause slip.

$$|F_{+}| = \mu |\mathcal{N}| = \mu mg$$
Substituting we get $\frac{3}{4} F_{max} = \mu mg$

$$(I) \quad Suppose \quad we \quad apply \quad double \quad the max force.$$

$$(I) \quad Suppose \quad we \quad apply \quad double \quad the \quad max \quad force.$$

$$Find: \quad \dot{x} = \frac{4}{8} 0$$

$$Solution: \quad F_{+} = \mu mg \quad oz \quad it's \quad pertremized.$$

$$\dot{x} = \frac{F + F_{+}}{m} = \frac{1}{6} (\mu mg - F)R$$

