

Curved Surfaces and Rolling (contra)

In both these scenarios we have

$$
\vec{v}_{c}=\vec{w} \times \vec{r}_{A C}=r w \hat{e}_{T}
$$

Acceleration:
inside of curve.
know that point c
follows a circular path
 of radius $p-r$.

$$
\Longrightarrow \vec{a}_{c}=r \alpha \hat{e}_{T}+\frac{(r \omega)^{2}}{p-r} \hat{e}_{n}
$$

Generally:

$$
\vec{a}_{c}=r \alpha \hat{e}_{T}+\frac{(r \omega)^{2}}{\rho-r} \hat{e}_{n}
$$

This gave us $\quad \vec{a}_{A}=\left(\frac{\rho r \omega^{2}}{\rho-r}\right) \hat{e}_{n}$
$\rho=$ radius of curve at A.

Outside of curve

Let's derive $\quad \vec{a}_{A}=\vec{a}_{c}+\vec{\alpha} \times \vec{r}_{C A}-\omega^{2} \vec{r}_{C A} \quad \hat{k} \times \hat{e}_{n}=-\hat{e}_{T}$

$$
\begin{aligned}
= & r \alpha \hat{e}_{T}+\frac{(r \omega)^{2}}{\rho+r} \hat{e}_{n}+(<\hat{k}) *\left(r \hat{e}_{n}\right) \\
& -\omega^{2}\left(r \hat{e}_{n}\right) \\
= & \frac{(r \omega)^{2}}{\rho+r} \hat{e}_{n}-r \omega^{2} \hat{e}_{n} \\
= & \left(\frac{\rho r \omega^{2}}{\rho+r}\right) \hat{e}_{n}=-\left(\frac{\rho}{\rho+r}\right)\left(r \omega^{2}\right) \hat{e}_{n}
\end{aligned}
$$

If the surface is flat $\vec{a}_{A}=-r \omega^{\top} \hat{e}_{n}$, so the outside af a curve tends to lessen accelerations.
example:

Given: $\omega=10, \alpha=-1$
Find: velocities and accelerations of points $A \& C$.
Solution: velocities: $\quad \vec{v}_{A}=0$

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{1}{2} \times f^{\prime}(2)=-1 \\
\hat{e}_{T} & =\frac{1}{\sqrt{2}}(-\hat{\imath}+\hat{\jmath}) ; \hat{e}_{n}=\left(\frac{-1}{\sqrt{2}}\right)(\hat{\imath}+\jmath) \\
\vec{v}_{c}=\vec{\omega} \times \vec{r}_{A c} & =(10 \hat{k}) \times\left(\frac{1}{\sqrt{2}}\right)(\hat{\imath}+\hat{\jmath}) \\
& =\frac{10}{\sqrt{2}}(\hat{\jmath}-\hat{\imath}) \quad,
\end{aligned}
$$

acceleration: $\alpha=-1, \omega=10, r=1$
have $\quad \vec{a}_{A}=-\left(\frac{\rho r \omega^{2}}{\rho+r}\right) \hat{e}_{n}$
We need ρ : recall the formula $\frac{1}{\rho}=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}}$

$$
\begin{aligned}
& f^{\prime \prime}(x)=-\frac{1}{2} ; \frac{f^{\prime}(2)=-1}{} \begin{array}{l}
\rho=4 \sqrt{2} \\
\vec{a}_{A}=\left(\frac{4 x^{\prime}(10)^{2}}{4 \sqrt{2}+1}\right)\left(\frac{1}{\sqrt{2}}\right)(\hat{\imath}+\hat{\jmath})
\end{array}
\end{aligned}
$$

To get $\vec{a}_{c}=r \alpha \hat{e}_{T}+\frac{(r \omega)^{2}}{\rho+r} \hat{e}_{n}$
example:

iClickr:
(0) Given

Which of the other points could have velocity \vec{v} ?
(a) A
(i) B
(c) C
(d) none is possible.

$$
\vec{v}_{Q}=\vec{v}_{P}+\underbrace{\stackrel{\rightharpoonup}{\omega} \times \vec{r}_{P Q}}_{\begin{array}{c}
\text { perpentiuclar } \\
\text { to } \\
\stackrel{\rightharpoonup}{P Q}^{2}
\end{array}}
$$

(1)

Given

Which of the following could represent the \vec{a}_{c} and \vec{a}_{A} ?
(a) $\vec{a}_{0} \overrightarrow{ }$

$$
\uparrow \stackrel{\rightharpoonup}{a}_{A}
$$

(b) $\xrightarrow{\vec{a}_{c}}$

$$
\downarrow_{\overrightarrow{a_{A}}}
$$

(c) $\leftarrow^{\vec{a}_{c}}$

$$
\hat{\imath} \vec{a}_{A}
$$

7
(d) $\hat{\imath}_{\vec{a}_{c}}$

$$
\stackrel{\vec{a}_{A}}{\longrightarrow}
$$

$$
\alpha=10
$$

(2)

(a) $\left\|\vec{a}_{A_{1}}\right\|>\left\|\overrightarrow{a_{A_{2}}}\right\|$
(c) $\left\|\vec{a}_{c_{1}}\right\|>\left\|\overrightarrow{a_{c_{2}}}\right\|$
(b) $\left\|\vec{a}_{A_{1}}\right\|<\left\|\vec{a}_{A_{2}}\right\|$
(-) (d) $\left\|\overrightarrow{a_{1}}\right\|<\left\|\overrightarrow{a_{c 2}}\right\|$
(e) $\vec{a}_{A_{1}} \neq \vec{a}_{A_{2}}$

