

Recall: link 1 denoted $\angle 1$ has angular velocity denoted by w_{1} has ω_{2} as its any. vel.
the geometry

$$
\begin{aligned}
& \omega_{1}=3 \mathrm{rad} / \mathrm{sec} \quad \alpha_{1}=-2 \mathrm{rad} / \mathrm{sec} \\
& \rho=17 \mathrm{~cm}
\end{aligned}
$$

Find: α_{2} of Link 2 .
Relation ships:

$$
\begin{aligned}
& \vec{a}_{c}=\vec{a}_{A}+\vec{a}_{1} \times \vec{r}_{A C}-\omega_{1}^{2} \vec{r}_{A C} \\
& \vec{a}_{A}=\vec{a}_{2} \times \vec{r}_{0 A}-\omega_{2}^{2} \vec{r}_{C A} \\
& \vec{a}_{c}=\frac{v_{c}^{2}}{\rho} \hat{e}_{n}+\ddot{s}^{2} \hat{e}_{T} \quad \ddot{s}=\frac{d\|\vec{v}\|}{d t}
\end{aligned}
$$

Approach is to find v_{c} and w_{2}, to as well then be able to reduce to zequations in the Scalars α_{2} and \ddot{s}

Step 1:

$$
\begin{aligned}
& \vec{v}_{A}=\overrightarrow{w_{2}} \times \vec{r}_{0 A} \\
& \vec{v}_{C}=\vec{v}_{A}+\vec{w}_{1} \times \vec{r}_{A C}
\end{aligned} \quad \begin{aligned}
& \overrightarrow{\vec{r}_{C}}=\overrightarrow{w_{2}} \times \overrightarrow{r_{0}} \\
& +\overrightarrow{w_{1}} \times \vec{r}_{A C}
\end{aligned}
$$

We also know that \vec{v}_{c} is really given by the scalar v_{c}, since its direction is Constrained.

$$
\stackrel{\rightharpoonup}{v}_{c}=v_{c} \hat{e}_{T}
$$

Compute \hat{e}_{T} :

$$
\begin{aligned}
\hat{e}_{t} & =\cos \theta \hat{\imath}+\sin \theta \hat{\jmath} \\
& =\left(\frac{15}{17}\right) \hat{\imath}+\left(\frac{8}{17}\right) \hat{\jmath}
\end{aligned}
$$

Substituting we get:

$$
\begin{aligned}
& \text { Substituting we get: } \\
& v_{c} \hat{e}_{t}=v_{c}\left(\frac{15}{17} \hat{\imath}+\frac{8}{17} \hat{\jmath}\right)=\left(w_{2} \hat{k}\right) \times(13 \hat{\jmath})+(3 \hat{k}) \times(8 \hat{\imath}-8)
\end{aligned}
$$

Solving for v_{c} and $w_{2}: v_{c}=51, w_{2}=-\frac{21}{13}$
Step 2: Sub v_{c} and ω_{2} into our initial equations above.
First let's get $\hat{e}_{n}: \hat{e}_{n} \cdot \hat{e}_{T}=0$

$$
\begin{aligned}
& e_{n}=\left(\frac{15}{17}\right) \hat{\imath}+\left(\frac{8}{17}\right) \hat{\jmath} \\
& \hat{e}_{T}=\left(\frac{8}{17}\right) \hat{\imath}+\left(\frac{15}{17}\right) \hat{\jmath}
\end{aligned}
$$

So doing substitution we get

$$
\begin{aligned}
& \frac{(51)^{2}}{17}\left(-\frac{8}{17} \hat{\imath}+\frac{15}{17} \hat{\jmath}\right)+\underline{s}\left(\frac{15}{17} \hat{\imath}+\frac{8}{17} \hat{\jmath}\right) \\
= & \left(\alpha_{2} \hat{k}\right) \times(13 \hat{\jmath})-\left(\frac{-21}{13}\right)^{2}(13 \hat{\jmath})+(-2 \hat{k}) \times(8 \hat{\imath}-8 \hat{\jmath})-(3)(8 \varepsilon-8 \hat{\jmath})
\end{aligned}
$$

2 equs 2 unknowns

$$
\begin{aligned}
& \dot{s}=-240 \\
& \alpha_{2}=15.1 \mathrm{rad} / \mathrm{sec}^{2}
\end{aligned}
$$

A buy moves along a figure-elght type curve point at which

given by the polar coordinate relation

$$
r=\sqrt{25 \cos 2 \theta}
$$

and it moves at constant speed of $2 \mathrm{~m} / \mathrm{s}$.
Determine: the acceleration vector \vec{a} bung at the next time the lng has purely horizontal velocity.

$$
\begin{aligned}
& \vec{v}_{\text {buy }}=\dot{r}_{\hat{e}_{r}}+r \dot{\theta} \hat{e}_{\theta} \\
& \vec{a}_{\text {buy }}=\left(\dot{r}-r \dot{\theta}^{2}\right) \hat{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{e}_{\theta}
\end{aligned}
$$

Let's f ind the point in question:
The velocity is purely horizontal exactly when y is maximized.

$$
y=r \cdot \sin \theta \text { want } y^{\prime}=0
$$

$$
\begin{aligned}
O=\frac{d y}{d \theta} & =r^{\prime}(\theta) \sin \theta+r(\theta) \cos \theta \quad r=\sqrt{25 \cos 2 \theta} \\
& =\frac{1}{2} \frac{1}{r(\theta)}(-5 \theta \sin 2 \theta) \sin \theta+r(\theta) \cos \theta \\
0= & (-25) \sin 2 \theta \cdot \sin \theta+r^{2}(\theta) \cos \theta \\
0= & (-25) \sin 2 \theta \sin \theta+25 \cos 2 \theta \cos \theta \\
\Rightarrow & \sin 2 \theta \sin \theta=\cos 2 \theta \cdot \cos \theta \quad 2 / 300 \sqrt{3}
\end{aligned}
$$

By inspection

$$
\theta=30^{\circ}=\pi / 6
$$

$$
r=\sqrt{25 \cos ^{2} \theta}=\frac{5}{\sqrt{2}}
$$

See Adteredum for direct solution for 9
First derivatives: $\left\|\vec{v}_{\text {bug }}\right\|=2=\left\|\dot{r} \hat{e}_{r}+r \dot{\theta} \hat{e}_{\theta}\right\|$

$$
\dot{r}=\frac{1}{2} \frac{-50 \sin 2 \theta}{\sqrt{25 \cos 2 \theta}} \cdot \dot{\theta}=\left(-\frac{\sqrt{25} \sin 2 \theta}{\sqrt{\cos 2 \theta}}\right) \cdot \dot{\theta} \rho
$$

We know

$$
\begin{aligned}
z & =\sqrt{\dot{r}^{2}+r^{2} \dot{\theta}^{2}}=\sqrt{\frac{25 \sin ^{2} 2 \theta}{\cos 2 \theta} \cdot \dot{\theta}^{2}+25 \cos 2 \theta \cdot \theta^{2}} \\
& =\sqrt{\frac{25}{\cos 2 \theta}} \dot{\theta} \Longrightarrow \dot{\theta}=\frac{2 \sqrt{\cos 2 \theta}}{5} \\
>\dot{r} & =\frac{-5 \sin 2 \theta}{\sqrt{\cos 2 \theta}} \cdot \dot{\theta}=-\underline{2 \sin 2 \theta}
\end{aligned}
$$

At this particular point $\dot{\theta}=\frac{\sqrt{2}}{5}$ and $\dot{r}=-\sqrt{3}$

Second derivatives:

$$
\begin{aligned}
\ddot{r}=\frac{d}{d t}\{-2 \sin 2 \theta\} & =(-4 \cos 2 \theta) \dot{\theta} \\
& =\left(-\frac{8}{5}\right)(\cos 2 \theta)^{3 / 2}
\end{aligned}
$$

\therefore from above

$$
\ddot{\theta}=\frac{d}{d t}\left\{\frac{2 \sqrt{\cos 2 \theta}}{5}\right\}=\frac{1}{5} \frac{-2 \sin 2 \theta}{\sqrt{\cos 2 \theta}} \cdot \dot{\theta}=\left(\frac{-4}{25}\right) \sin \theta
$$

At our point we get $\ddot{r}=\frac{-2 \sqrt{2}}{5}$ and $\ddot{\theta}=\frac{-2 \sqrt{3}}{25}$
Finally we can apply our formula:

$$
\begin{aligned}
& \vec{a}_{\text {buy }}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{e}_{\theta} \\
& \vec{a}_{\text {buy }}=\frac{(-0.849) \hat{e}_{r}-(1.47) \hat{e}_{\theta} \mathrm{m} / \mathrm{s}}{} \\
& \vec{F}_{\text {on buy }}=m_{\text {buy }} \vec{a}_{\text {bug. }}
\end{aligned}
$$

* Addendum: to solve for θ in $\sin \theta \sin 2 \theta=\cos \theta \cos 2 \theta$ convert to $\tan \theta \cdot \tan 2 \theta=1$
Now let $\tan \theta=\frac{b}{a}$ and therefore $\tan 2 \theta=\frac{a}{b}$
I) this gives the triangles:

Each triangle must have hypotenuse $\sqrt{a^{2}+b^{2}}$, and are therefore similar $\Longrightarrow \theta+2 \theta=90$ and so $\theta=30^{\circ}$

