
(1) Suppose you see the vapor trail of a passenger jet in the sky, and you are informed that it's flying of a constant speed (50 oomph). Which of the following can you determine?
(a) $\vec{r}_{\text {Jet }}^{d}(s)$
(b) $\vec{r}_{\text {Jet }}(t)=\vec{r}_{\text {Jet }}^{d}(s(t))$
(c) both (a) k
(b)
(d) none of the above
(2) Consider the circle Which of the following is true?
(a) $\left\|\vec{r}_{Q}^{d^{\prime \prime}}(s)\right\|=R$
(b) $\left\|\dot{r}_{\alpha}^{d^{\prime \prime}}(s)\right\|=\frac{1}{R}$
(c) $\left\|\vec{r}_{Q}^{a^{\prime \prime}}(s)\right\|=1$
(d) hone of these.

3
Suppose that particle P is moving alary the shown curve and that the velocity and acceleration vectors are or thogenal.
Which of the following is true:
(a) the particle is speeding up.
(b) slowing down
(c) Neither (a) nor (b) B $\quad \underset{a}{ }=\ddot{q}^{\prime} \hat{e}_{T}+\frac{\dot{s}^{2}}{\rho} \hat{e}_{n}$
(d) insufficient information.

Major formulas:

$$
\begin{aligned}
& \vec{v}_{p}=\dot{s}(t) \hat{e}_{T}(t) \\
& \vec{a}_{p}=\dot{s} \hat{e}_{T}+\frac{\dot{s}^{2}}{\rho} \hat{e}_{n}
\end{aligned}
$$

example: Consider the path defined in polar coords $r^{2}(\theta)=2 \cos 2 \theta \mathrm{ft}^{2}\binom{$ Bernoulli $i}{$ lemniscate }

Given: at time $t=0$ a cyclist is at point P,

$$
\theta(t)=3 t^{2}+2 t
$$

Find: $\vec{v}_{p}, \overrightarrow{a_{p}}$ and ρ at point/time P.

We have two sets of equivalent formulae:

$$
\begin{array}{ll}
\vec{v}=\dot{r} \hat{e}_{r}+r \dot{\theta}_{\theta} ; & \vec{a}=(r \ddot{\theta}+ \\
\vec{v}=s) \hat{e}_{+} & \vec{a}=\dot{s} \hat{e}_{t} \\
\dot{s}=r \dot{\theta} & \hat{e}_{T}= \\
\frac{\hat{e}_{n}}{\rho}=r \dot{\theta}^{2}-\dot{r} \Longrightarrow \rho \rho=\frac{\dot{s}^{2}}{r \dot{\theta}^{2}-r}
\end{array}
$$

To complete the problem we need $\dot{\theta}, \ddot{\theta}, r, \frac{r}{r}, \dot{r}$ At point P we have $r^{2}=2 \cos \theta \Longleftrightarrow \begin{gathered}t=0, \theta=0 \\ r=\sqrt{2}\end{gathered}$ $\dot{\theta}=6 t+2, \quad \ddot{\theta}=6$
To get the derivatives of r :

$$
\begin{aligned}
\dot{r}^{2} & =2 \cos 2 \theta \\
2 r \dot{r} & =(-4 \sin 2 \theta) \dot{\theta} \Rightarrow \dot{r}(0)=0 \\
2 \dot{r}^{2}+2 r \ddot{r} & =(-2 \cos 2 \theta)(2 \dot{\theta})^{2}-4 \sin (2 \theta) \dot{\theta} \\
\Longrightarrow & \dot{r}(0)=-8 \sqrt{2}
\end{aligned}
$$

Now apply the relationships: $\vec{v}=r \dot{\theta} \hat{e_{\theta}}=2 \sqrt{2} \hat{\jmath}$

$$
\begin{aligned}
& \rho=\frac{\dot{s}^{2}}{r \dot{\theta}^{2}-\ddot{r}}=\frac{\sqrt{2}}{5} \\
& \vec{a}=(r \ddot{\theta}) \jmath-\frac{\dot{s}^{2}}{\rho} \hat{c}
\end{aligned}
$$

Motion of Rigid Bodies

A rigid body: an object where the distance between two points attached to it satisfy

$$
\left\|\vec{r}_{A}(t)-\vec{r}_{B}(t)\right\|=\text { canst }
$$

If the "z-coordinate" of every point on the body is constant, we say we have planar motion.

$$
\begin{aligned}
& \vec{r}_{O Q}=\vec{r}_{O P}+{\overrightarrow{r_{P Q}}}^{\dot{\vec{r}}_{P Q}} \\
& \dot{\vec{r}}_{O Q}=\dot{\vec{r}}_{O P}+{\stackrel{\rightharpoonup}{r_{P Q}}}^{\vec{r}_{Q}}=\vec{\rightharpoonup}_{P P}+{\underset{\text { examine }}{ }}_{\vec{r}_{P Q}}
\end{aligned}
$$

So in polar coordinates:

$$
\begin{aligned}
& \vec{r}_{P Q}=\left\|\vec{r}_{P Q}\right\|(\cos \theta \hat{c}+\sin \theta \hat{\jmath}) \otimes \text { due rigidity } \\
& \stackrel{\rightharpoonup}{r}_{P Q}=\left\|\vec{r}_{P Q}\right\| \dot{\theta} \underbrace{(-\sin \theta \hat{\imath}+\cos \theta \hat{\jmath}}_{\hat{k}}) \\
& \left.\dot{\vec{r}}_{P Q}=(\dot{\theta} \hat{k}) \times \vec{r}_{P Q} \theta \hat{c}+\sin \theta \hat{\jmath}\right)
\end{aligned}
$$

We call $\dot{\theta} \hat{k}=\vec{w}$ the angular velocity of the rigid body.

$$
\vec{v}_{Q}=\vec{v}_{p}+\vec{\omega} \times \vec{v}_{P d}
$$

Thought experiment

