Big Picture on Position, Position vectors

Positions (points in space) → D coordinates

 posição vectors

\(\mathbf{r} = \mathbf{v} \times t + \mathbf{a} \times t \)

Cartesian

\[\mathbf{r} = x(t) \mathbf{i} + y(t) \mathbf{j} \]

\[\dot{\mathbf{r}} = \dot{x}(t) \mathbf{i} + \dot{y}(t) \mathbf{j} \]

\[\ddot{\mathbf{r}} = \ddot{x}(t) \mathbf{i} + \ddot{y}(t) \mathbf{j} \]

\[\dddot{\mathbf{r}} = \dddot{x}(t) \mathbf{i} + \dddot{y}(t) \mathbf{j} \]

Can traverse this chart any way we like.

\[r = \sqrt{x^2 + y^2} \]

\[\theta = \tan^{-1}(x, y) \]

Polar

\[\mathbf{r} = r(t) \hat{r}(t) \]

\[\dot{\mathbf{r}} = \dot{r}(t) \hat{r}(t) + r(t) \dot{\theta}(t) \hat{\theta}(t) \]

\[\ddot{\mathbf{r}} = \ddot{r}(t) \hat{r}(t) + (\ddot{\theta}(t) + 2 \dot{\theta}(t)) \hat{\theta}(t) \]

Velocity is the time derivative of the position vector, not the coordinates.

\[\mathbf{v} = \dot{\mathbf{r}} \]

\[\mathbf{a} = \ddot{\mathbf{r}} \]

\[\mathbf{F} = \frac{\partial}{\partial \mathbf{r}} \mathbf{V}(\mathbf{r}) \]

\[\mathbf{E} = \frac{\partial}{\partial \mathbf{r}} \mathbf{B}(\mathbf{r}) \]
Today our focus is parametrized curves.

Example:

\[y(x) = 50 \cos \left(\frac{2\pi x}{3000} \right) \]

\[f(x) = 50 \left(\frac{2\pi}{3000}x \right) \sin \left(\frac{2\pi x}{3000} \right) \]

If the driver of the car maintains a constant speed of 55 mph, what is the car's velocity at \(x = 2500 \) ft?

The position vector \(\mathbf{r}(t) = x(t)\hat{i} + y(t)\hat{j} \) is given by

\[\mathbf{v}(t) = \mathbf{r}'(t) = x'(t)\hat{i} + f'(x(t))x'(t)\hat{j} \]

The speed being constant means \(|\mathbf{v}(t)| = 55 \) mph.

Using the relationship between \(x \) & \(y \):

\[x'(t)^2 + \left(f'(x(t))x'(t) \right)^2 = \left(\frac{55 \text{ mph}}{\text{ft/sec}} \right)^2 \]

\[x'(t)^2 + \left(\frac{f'(x(t))x'(t)}{x'(t)} \right)^2 = \left(55 \times \frac{88}{60} \right)^2 (\text{ft/sec})^2 \]

Let \(t_0 \) be the time at which \(x = 2500 \)

\[x'(t_0) = \frac{(80.7)^2}{1 + f'(2500)^2} = \frac{(80.7)^2}{1 + 55 \times \left(\frac{2\pi}{3000} \right)^2 \sin \left(\frac{2\pi x}{3000} \right)^2} \]

\[x'(t_0) = 80.3 \text{ ft/sec} \]

\[\mathbf{v}(t_0) = 80.3 \hat{i} + 7.29 \hat{j} \text{ ft/sec} \]
The Parametric Curve and Decompositions

\(s = \text{distance travelled along the curve.} \)

\(\mathbf{P}(0) \) means the point we are at after travelling \(0 \) units of distance along the curve.

\(\mathbf{P}(10) \) means the point we are at after travelling \(10 \) units of distance along the curve.

Example: a straight line

\[\mathbf{d}(s) = \mathbf{b} + s \cdot \mathbf{a} \]

\[\left\| \mathbf{d}(s_2) - \mathbf{d}(s_1) \right\| = s_2 - s_1 \]

Unit tangent vector

For small \(s \) we have

\[(s^2 + \epsilon)^2 \approx \| \mathbf{r}'(s) \mathbf{a} \|^2 \]

\[\| \mathbf{r}'(s) \|^2 = 1 \] so \(\mathbf{r}'(s) \) is a unit vector.

\[\hat{\mathbf{e}}_T(s) = \mathbf{r}'(s) \] is a unit tangent vector.

Curvature and the Principal Normal Vector

\[\frac{d}{ds} \{ \hat{\mathbf{e}}_T(s) \cdot \hat{\mathbf{e}}_T(s) \} = 0 \implies \hat{\mathbf{e}}_T(s) \cdot \mathbf{r}'(s) = 0 \]

\(\hat{\mathbf{e}}_T(s) \) is orthogonal.

\(\| \hat{\mathbf{e}}_T(s) \| \) large means lots of change locally.