

Big Picture on Position, Position vectors
position vectors in space)
$$D$$
 coordinates $r=2, \theta=60^{\circ}$
 $r=1, y=1$
position vectors D components.
 $r=1, y=1$
 $r=1, y$

Today our focus is parametrized curves.
Example:

$$y(x) = 50 \cos\left(\frac{2\pi i x}{2000}\right)$$
 Ft. = $f(x)$
 $f(x) = 50 \cos\left(\frac{2\pi i x}{2000}\right)$ Ft. = $f(x)$
 $f(x) = 50 \left(\frac{2\pi i x}{2000}\right)$ Ft. = $f(x)$
 $f(x) = 50 \left(\frac{2\pi i x}{2000}\right)$ Ft. = $f(x)$
 $f(x) = 50 \left(\frac{2\pi i x}{2000}\right)$ Ft. = $f(x)$
 $f(x) = 50 \left(\frac{2\pi i x}{2000}\right)$ Ft. = $f(x) = \frac{1}{2}$
 $f(x) = 50 \left(\frac{2\pi i x}{2000}\right)$ Ft. = $f(x) = \frac{1}{2}$
The driver of the car wantakes a constant
gread of 55 mph, what is the car's velocity at
 $x = 2500$ Ft?
The position vector $f_{0c}(f) = x(f)C + y(f)G$
 $= x(f)C + f(x(f))G$
The speed being constant means $(177(f)) = 55$ mph
 $f(x) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{$

The Parametric Curve and Decompositions

$$s=distance travelled$$

 $s=0$
 $f(s)$
 $f(s)$