

Big Picture on Position, Position vectors....
positions (points in space) D coordinates $r=2, \theta=60^{\circ}$
position va tors
components.
$x=1, y=1$ wit basis.

$$
\vec{r}_{o f}=\hat{\imath}+\sqrt{3} \hat{\jmath}
$$

Velocity is the time derivative of the position vector, NOT the coordinates.

Cartesian

$$
\begin{gathered}
x, y \\
\vec{r}=x(t) \hat{\imath}+y(t) \hat{j} \\
\forall \text { diff } \\
\vec{v}=\dot{\vec{r}}=v_{x} \hat{\imath}+v_{y} \hat{\jmath} \\
=\dot{x} \hat{\imath}+\dot{y} \hat{\jmath} \\
\downarrow \text { diff }
\end{gathered}
$$

$$
\downarrow \text { diff }
$$

$$
\rightleftarrows \vec{v}=\dot{\vec{r}}=v_{r} \hat{e}_{r}(t)+v_{\theta} \hat{e}_{\theta}(t)
$$

$$
=\dot{r} \hat{e}_{s}+r \dot{\theta} \hat{e}_{\theta}
$$

$$
\downarrow \text { diff }
$$

$$
\Longrightarrow \vec{a}=\left(\ddot{b}-\dot{\theta}^{2}\right) \hat{e}_{r}
$$

Can traverse this chert any way we $+(r \dot{\theta}+2 \dot{r} \dot{\theta}) \hat{e}_{\theta}$

$$
\begin{array}{ll}
r=\sqrt{x^{2}+y^{2}} & x=r \cos \theta \\
\theta=\tan ^{-1}(x, x) & y=r \sin \theta
\end{array}
$$

Today our focus is parametrized curves.
Example:

$$
y(x)=50 \cos \left(\frac{2 \pi(x}{3000}\right) \quad f+=\frac{f(x)}{f(x)} \begin{array}{r}
=(50)\left(\frac{2 \pi}{3000}\right) \sin \left(\frac{2 \pi y}{3000}\right) \\
f^{\prime}(x)
\end{array}
$$

If the driver of the car maintains a constant speed of 55 mph , what is the car's velocity at $x=2500$ ft?
The position vector

$$
\begin{aligned}
\vec{F}_{o c}(t) & =x(t) \hat{\imath}+y(t 1 \hat{\jmath} \\
& =x(t) \hat{\imath}+f(x(t)) \hat{\jmath}
\end{aligned}
$$

velocity given by

$$
\vec{\sim}(t)=\vec{r}_{o c}^{\prime}(t)=\dot{x}(t) \hat{\imath}+f^{\prime}(x(t)) \dot{x}(t) \hat{\jmath}
$$

The speed being constant means $\|\vec{v}(t)\|=55 \mathrm{mph}$
Using the relationship between $\dot{x} \notin \dot{y}$:

$$
\begin{aligned}
& \left.\dot{x}(t)^{2}+\left\{f^{\prime}(x \mid t)\right) \cdot \dot{x}(t)\right\}^{2}=(55 \mathrm{mph})^{2} \\
& \dot{x}(t))^{2}\left\{\left(+f^{\prime}(x)^{2}\right\}=\dot{x}(t)^{2}+\left\{f^{\prime}(x \mid t)\right) \cdot \dot{x}(t)\right\}^{2}=\left(55 \cdot \frac{88}{60}\right)^{2}(f t / \mathrm{sec})^{2}
\end{aligned}
$$

Let to be the time at which $x=2500$
\leadsto Let to be the time eel which $x=2500$

$$
\begin{aligned}
& \dot{x}\left(t_{0}\right)^{2}=\frac{(80.7)^{2}}{1+f^{\prime}(2500)^{2}}=\frac{(80.7)^{2}}{1+\left\{50 \cdot\left(\frac{2 \pi}{3000}\right) \sin \left(\frac{2 \pi}{3000} 2500\right)\right\}^{2}} \\
& \dot{x}\left(f_{0}\right)=80.3 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

$\longleftarrow D \vec{v}\left(t_{0}\right)=80.3 \hat{\imath}+7.29 \hat{\jmath} \mathrm{ft} / \mathrm{sec}$

The Parametric Curve and Decompositions $s=$ distance travelled
$s=0$
s = distance along the curve.

means the point we core at after travelling 10 units of distance along the curve.
example: a straight line

$$
\begin{equation*}
\vec{r}_{o p}^{d}(s)=\vec{b}_{b}+s \cdot \hat{a} \tag{2}
\end{equation*}
$$

Notice that $\left\|\vec{r}_{o p}^{d}\left(s_{2}\right)-\vec{r}_{O p}^{d}\left(s_{1}\right)\right\|=s_{2}-s_{1}$
Unit tangent vector
for small Δs we have

Curvature and the Principal Normal Vector

$$
\frac{d}{d s}\left\{\hat{e}_{T}(s) \cdot \hat{e}_{T}(s)\right\}=0 \Longrightarrow \begin{gathered}
\hat{e}_{T}(s) \cdot \hat{e}_{T}^{\prime}(s) \equiv 0 \\
\text { orthogonal }
\end{gathered}
$$

$\hat{e}_{T}^{\prime}(s)$ curvature vector.
$\| \hat{e}_{T}^{\prime} l l$ large means lots of change locally.

