TAM 212 Worksheet 7: Car steering

This worksheet aims to understand how cars steer. The #avs webpage on “Steering geometry” illustrates the basic ideas. On the diagram below, the kingpins at A and B are a distance \(g \) apart (this is almost the same as the track distance between the front wheel tire centers), while the wheelbase distance is \(AF = BE = \ell \). Modern cars use ball joints instead of actual pins at the kingpin joints.

1. Consider the four-wheeled car configuration shown above. The left-front wheel is turned at an angle of \(\theta_L \), and the turning radius of the car is \(\rho \), measured from the center \(P \) of the rear axle to the instantaneous center \(M \). Derive a formula for \(\rho \) in terms of \(\theta_L \), leaving measurements \(g \) and \(\ell \) in symbolic form.

2. Similarly to the previous question, derive a formula for \(\rho \) in terms of the angle \(\theta_R \) of the right-front wheel.
3. While trying to park our car in a tight spot, we want to drive our car around a counter-clockwise curve with a radius of curvature of $\rho = 5$ m. At what angles θ_L and θ_R should we ideally set our wheels, in order to make this turn? Give your answers in numeric form.

4. Ackermann steering geometry, shown in the figure below, uses a four-bar linkage $ABCD$ to constrain the wheel angles θ_L and θ_R. The tie rod has length $CD = f$, while the steering arms have lengths $AD = a$ and $BC = b$. A simple rule of thumb for designing Ackermann steering sets the linkage geometry so that the steering arms point to the center P of the rear axle, as shown. Given lengths $a = b = 0.2$ m, what is the angle γ and the appropriate length f of the tie rod?

\[g = 2 \text{ m} \]
\[\ell = 3 \text{ m} \]
5. The initial and turned state of front wheels of Ackermann steering geometry case are drawn as below. On this figure, indicate the turning angles of right and left wheel (θ^*_R and θ^*_L), and γ.

6. θ_L and θ_R we found from Q3 are ideal angles during the turn without the tie rod CD. We want to see how well the Ackermann steering geometry we designed in the Q4 works. Consider the turn from Q3 with $\rho = 5$ m, and set the left-front wheel angle θ^*_L is equal to the value θ_L found in Q3 ($\theta^*_L = \theta_L$).

What right-front angle θ^*_R is now determined by the linkage? Use the diagram below to start with θ_L and work your way across the diagram to find θ^*_R. The law of cosines will be helpful for determine angles on general triangles, for example

$$c^2 = a^2 + g^2 - 2ag \cos \angle DAB$$
7. How close is the Ackermann value of θ_R^{*} from Q5 to the ideal value θ_R from Q3? Is this Ackermann steering geometry acceptable for real-world usage?

8. Bonus question: While making the turn in the above question, we measure the speed of point P to be $v_P = 2$ m/s (we are parking very quickly!). What is the angular velocity ω of the car during the turn?

9. Bonus question: While turning as above, what are the speeds of the four wheel joints v_A, v_B, v_E, and v_F?

10. Bonus question: Considering the velocities of the four wheel joints you found in Q8, would it be reasonable to build a rear-wheel-drive car with a rear driveshaft consisting of a single rod bolted to each wheel? Why or why not? What might an alternative be?