Name: \qquad
Group members: \qquad

TAM 210/211 - Worksheet 3

Objectives:

- Use free body diagrams and equilibrium equations to determine forces in cables and springs.
- Explore an experimental setup to verify theoretical findings.

1) A box of weight W is supported by two springs, as illustrated below.

Figure 1: Spring-mass setup.
a) Draw a free body diagram of the forces acting at ring A. Denote the force in spring $A C$ as $F_{A C}$ and the force in spring $A B$ as $F_{A B}$.

b) Use the equilibrium equations $\sum \mathbf{F}=\mathbf{0}$ to determine $F_{A C}$ and $F_{A B}$. Your answers should be functions of W, θ_{1} and θ_{2}.

$$
\begin{aligned}
& \sum F_{x}=0 \quad F_{A B} \cos \theta_{2}-F_{A C} \cos \theta_{1}=0 \\
& \sum F_{y}=0 \quad F_{A B} \sin \theta_{2}+F_{A C} \sin \theta_{1}-w=0 \\
& \text { from (1) } \quad F_{A B}=F_{A C} \frac{\cos \theta_{1}}{\cos \theta_{2}} \quad \text { using this in (2) we get }
\end{aligned}
$$

$F_{A C}=\frac{w \cos \theta_{2}}{\sin \theta_{2} \cos \theta_{1}+\cos \theta_{2} \sin \theta_{1}}$

$F_{A B}=\frac{w \cos \theta_{1}}{\sin \theta_{2} \cos \theta_{1}+\cos \theta_{2} \sin \theta_{1}}$
2) Use an experimental setup to validate your findings above. Start by calibrating the springs. Make sure to have the reading mark set to "zero" when the spring is hanging unloaded at a vertical position.
a) Find the weight of the object in the toolbox by using a single spring. Record the weight.
b) Use the peg-board, spring, ring, bolts and the weight object to reproduce Question 1 setup. Use the angle measurements and the mass of your object to predict your spring reading using your equations from Question 1(b). Check your solution with actual spring readings.
3) In this next experimental setup, the springs are fixed at uneven positions (different heights) again, but the springs are no longer connected to each other via a ring. Instead, connect the springs using a piece of string, to model the cable that goes through the pulley at A. Use a bobbin to represent the frictionless pulley.

a) After hanging your object, what do you notice about the angles θ_{1} and θ_{2} ? What does this tell you about the forces acting on the two ends of the string?

$$
\begin{aligned}
& \theta_{1}=\theta_{2} \Rightarrow \sum F_{n}=0 \quad F_{A B} \cos \theta_{2}=F_{A C} \cos \theta_{1} \\
& \Rightarrow F_{A B}=F_{A C}
\end{aligned}
$$

b) Use the angle measurements and the mass of your object to predict your spring reading using your equations from Question 1(b). Check your solution with actual spring readings.
4) An experimental setup is created as illustrated below with string $A B C$ of length L.

a) What happens to angles θ_{1} and θ_{2} when the weight W is changed by changing the object? Why? $\theta_{1} \xi_{1} \theta_{2}$ donot change with weight. They remain constant and equal.

$$
\theta_{1}=\theta_{2}
$$

b) How do angles θ_{1} and θ_{2} relate to each other? (Hint: Remember the assumption we make for the tensions at the two ends of the string that goes over a frictionless pulley.) Express the angles in terms of the given symbolic variables and dimensions (neglect the size of the frictionless pulley B). How does your theoretical expression validate your conclusions in part (a)?
Tension in a string remains same. $F_{A B}=F_{A C}$

$$
\begin{aligned}
& \Rightarrow \theta_{2}=\theta_{1}=\theta . \quad l_{1}=\frac{a_{1}}{\cos \theta_{1}} \quad l_{2}=\frac{a_{2}}{\cos \theta_{2}} \Rightarrow l_{1}+l_{2}=\frac{a_{1}+a_{2}}{\cos \theta} \\
& \Rightarrow l=\frac{d}{\cos \theta} \Rightarrow \theta=\cos ^{-1}\left(\frac{d}{l}\right) .
\end{aligned}
$$

c) Express the forces along $A B$ and $B C$ as Cartesian vectors in terms of the given symbolic variables

$$
\begin{aligned}
& F_{A B}=F_{B C}=\frac{w}{2 \sin \theta} \\
& F_{A B}=-F_{A B} \cos \theta_{1} \hat{i}+F_{A B} \sin \theta_{1} \hat{j}=\frac{-w d}{2 \sqrt{l^{2}-d^{2}}} \hat{i}+\frac{w}{2} \hat{j} \\
& F_{B C}=F_{B C} \cos \theta_{2} \hat{i}+F_{B C} \sin \theta_{2} \hat{j}=\frac{w d}{2 \sqrt{l^{2}-d^{2}}} \hat{i}+\frac{w}{2} \hat{j}
\end{aligned}
$$

d) If the string $A B C$ were shorter, how would angles θ_{1} and θ_{2} and the forces along $A B$ and $B C$ change? $\quad \theta=\cos ^{-1}\left(\frac{d}{l}\right)$. If l is reduced $\theta_{1}=\theta_{2}=\theta$ will reduce $F_{A B}=F_{B C}=\frac{\omega}{2 \sin \theta} \Rightarrow$ as θ is reduced $\sin \theta$ reduces and as a result $F_{A B} \& F_{B C}$ will increase.
e) What implications does part (d) have on the design of systems with different string lengths in terms of the required strengths of the strings?
strings with shorten length should hame more strength, as the tension developed in them will be larger.

