Name: \qquad
Group members: \qquad

TAM 210/211 - Worksheet 3

Objectives:

- Use free body diagrams and equilibrium equations to determine forces in cables and springs.

1) A box of weight W is supported by two springs, as illustrated below.

a) Next to spring-mass figure above, draw a free body diagram for ring A. Denote the force in spring $A C$ as $F_{A C}$ and the force in spring $A B$ as $F_{A B}$.
b) Use the equilibrium equations $\sum \mathbf{F}=\mathbf{0}$ to determine $F_{A C}$ and $F_{A B}$. Your answers should be functions of W, θ_{1} and θ_{2}.
2) In this next setup, the two identical springs are fixed at uneven positions (different heights) again, but the springs are no longer connected to each other via a ring. Instead, connect the springs using a piece of string, to model the cable that goes through the pulley at A.

a) Before doing any calculations, predict if angle θ_{1} would be be greater than, less than, or equal to θ_{2}. Explain your reasoning.
b) The tension in the cable over a pulley is constant everywhere for a static system. Show that if spring constants k_{1} and k_{2} are equal, θ_{1} and θ_{2} must also be equal.
c) Express the magnitude of the forces in the springs as a function of W, θ_{1}, and θ_{2}.
3) Another setup is illustrated below with string $A B C$ of length L.

a) What happens to angles θ_{1} and θ_{2} when the weight W is changed by changing the object? Why?
b) How do angles θ_{1} and θ_{2} relate to each other? Express the angles in terms of the given symbolic variables and dimensions (neglect the size of the frictionless pulley B). How does your theoretical expression validate your conclusions in part (a)?
c) Express the forces along $A B$ and $B C$ as Cartesian vectors in terms of the given symbolic variables and dimensions.
d) If the string $A B C$ were shorter, how would angles θ_{1} and θ_{2} and the forces along $A B$ and $B C$ change?
e) What implications does part (d) have on the design of systems with different string lengths in terms of the required strengths of the strings?
