Announcements

- Quiz 5 next week (be sure to register for TAM 211 separately)

- Upcoming deadlines:
 - Tuesday (4/9): PL HW12
 - Friday (4/12): Written Assignment
Fluid Pressure
Mechanics is a branch of the physical sciences that is concerned with the state of rest or motion of bodies that are subjected to the action of forces.

SOLIDS
Rigid Bodies
TAM 210/211: Statics
TAM 212: Dynamics

FLUIDS
Deformable Bodies
TAM 251: Solid Mechanics

T = 16 in.
What Makes a Fluid or Solid?

Honey

Rock
They look like a fluid...

Cornstarch + water =

(small, hard particles)

(Mythbusters)
Fluids

Pascal’s law: A fluid at rest creates a pressure p at a point that is the same in all directions.

Incompressible: An incompressible fluid is one for which the mass density is independent of the pressure p. Liquids are generally considered incompressible. Gases are compressible, but may be approximated as incompressible if the pressure variations are relatively small.
Observe that the pressure varies *linearly* from the free surface, and is *constant* along any horizontal plane (since h is constant):

$$p = \rho gh$$

- static fluid pressure

Pressure = \text{density} \cdot \text{gravitational constant} \cdot \text{depth}

\begin{align*}
\text{[m]} \cdot [\frac{m}{s^2}] \cdot [m] &= \frac{N}{m^2} = \frac{N}{m^2}
\end{align*}
The tank is filled with water to a depth of $d = 4$ m. Determine the resultant force the water exerts on side A of the tank. ($\rho = 1000$ kg/m3)

$$F_R = \int w \, dx = \text{Area under the curve.}$$

$$F_R = \frac{1}{2} \rho d \cdot (2m) = \frac{1}{2} (\rho gd)(2d)$$

$$\rightarrow F_R = \rho gd^2$$
Determine the magnitude and location of the resultant hydrostatic force acting on the submerged rectangular plate AB. The plate has width 1.5 m. \((\rho_{\text{water}} = 1000 \text{ kg/m}^3) \)

\[
F_R = V_R = \frac{1}{2} (P_a + P_b) h d = \frac{1}{2} \rho g (h_1 + h_2) h d
\]

- \(h = 3 \text{ m} \)
- \(d = 1.5 \)
- \(P_a = \rho g l_1 \)
- \(l_1 = 2 \text{ m} \)
- \(P_b = \rho g l_2 \)
- \(l_2 = (2 + 3) = 5 \text{ m} \)