Announcements

- Quiz 4 this week
- Frame tutorial by Professor Kersh on Course Schedule

- Upcoming deadlines:
 - Tuesday (3/5)
 - PL HW
 - Friday (3/8)
 - Written Assignment
Objectives

- Frame and Machines: Examples

- Internal Loadings
 - The method of sections
Example

Given the weight of the cylinder is W, what is the loading on member BC by the pulley?

Strategy: Do analysis on the pulley to relate the tension in the rope (since it will be the same as W) to the forces from member BC.

FBD (A)

EoE

\[
\sum F_x = D_x - T = 0
\]

\[
\sum F_y = D_y - T = 0
\]

\[
D_x = T = W
\]

\[
D_y = T = W
\]
Example

Given the weight of the cylinder is W, what is the loading on member BC at B?

Strategy: Do analysis on the pulley to relate the tension in the rope (since it will be the same as W) to the forces from member BC.

FBD (C)

\[T = W \]

\[C_x \]

\[C_y \]

\[F_{AB} \]

EoE

\[\sum M_C = -F_{AB} \left(\frac{1.5}{2.5} \right) (2 \text{ m}) - T (2.5 \text{ m}) = 0 \]

\[F_{AB} \approx -2.08T \approx -2.08W \]
Find the force in the cable fastening the frame to the wall.

Which FBD would be the most useful?
(A) The pulley (No given parameter included)
(B) The T-beam (Too many unknowns)
(C) The Cable
(D) T-beam + pulley
(E) None of the above

3 unknowns only: T, A_x, A_y
Find the force in member AC.

Which FBD would be the most useful?

(A) Beam AB
(B) Beam AC
(C) Beam CD
(D) The whole assembly
(E) None of the above

(AC is a 2-force member)

\rightarrow 3 unknowns only: F_{Ac}, B_x, B_y
Find the clamping force at E.

From FBD II,
\[\Sigma M_B = 0 = \left(-\frac{a}{2}\right) F_{co} \sin 60^\circ + \left(\frac{a}{2}\right) F_{cd} \cos 60^\circ - (2a)F \]
\[\rightarrow F_{cd} = \frac{4F}{\cos 60^\circ - \sin 60^\circ} \]

From FBD III,
\[\Sigma M_A = 0 = (-1.5a)E + \left(-\frac{a}{2}\right) F_{co} \cos 60^\circ + \left(-\frac{a}{2}\right) F_{co} \sin 60^\circ - 2aF \]
\[E = \frac{4F}{3} \left(\frac{\cos 60^\circ + \sin 60^\circ}{\cos 60^\circ - \sin 60^\circ} + 1\right) \]
Chapter 7: Internal Loadings
Internal loadings developed in structural members

Beams are structural members designed to support loads applied perpendicularly to their axes.

Beams can be used to support the span of bridges. They are often thicker at the supports than at the center of the span.

Why are the beams tapered? Internal forces are important in making such a design decision.
Internal loadings developed in structural members

A fixed column supports these rectangular billboards.

Usually such columns are wider/thicker at the bottom than at the top. Why?
Internal loadings developed in structural members
Internal loadings developed in structural members

Structural Design: need to know the loading acting within the member in order to be sure the material can resist this loading

Cutting members at internal points reveal **internal forces and moments.**