Announcements

- Quiz 3 continues
- Thank you for your feedbacks

☐ Upcoming deadlines:
- Friday (2/22) – TODAY!
 - Written Assignment
- Tuesday (2/26)
 - PL HW

National Walk Your Dog Day
Objectives

• Structural analysis – Truss

• Truss members in tension and compression

• Method of joints
Chapter 6: Structural Analysis
Simple trusses

Trusses are commonly used to support roofs.

A more challenging question is, that for a given load, how can we design the trusses’ geometry to minimize cost?
Scaffolding

An understanding of statics is critical for predicting and analyzing possible modes of failure.

Buckling of slender members in compression is always a consideration in structural analysis.
Simple trusses

Truss:

- Structure composed of slender members joined together at end points
- Transmit loads to supports

Assumption of trusses

- Loading applied at joints, with negligible weight. Members joined by smooth pins

Result: all truss members are 2-force member. and therefore the force acting at the end of each member will be directed along the axis of the member
Roof trusses

Load on roof transmitted to purlins, and from purlins to roof trusses at joints.

Bridge trusses

Load on deck transmitted to stringers, and from stringers to floor beams, and from floor beams to bridge trusses at joints.
Truss joints

- Bolting or welding of the ends of the members to a gusset plates or passing a large bolt through each of the members
- Properly aligned gusset plates equivalent to pins (i.e., no moments) from coplanar, concurrent forces
- Simple trusses built from triangular members

Distinguish between compression & tension.
Method of joints

- Truss is in equilibrium ONLY if ALL individual pieces are in equilibrium
- Truss members are two-force members: equilibrium satisfied by equal, opposite, collinear forces

Procedure for analysis:
1. Draw a FBD of the whole truss and find the external reactions at the supports.
2. Draw a FBD of a joint with at least one known force and at most two unknown forces.
3. Use equations of equilibrium for the joint to solve for the unknown forces.
4. Repeat the process for finding forces in truss members of interest.

Remember, members in compression “pushes” back on the pin joints, and members in tension “pulls” back on the pin joints.
Identify the number of force components acting on pins A and B.

- Assume unknown direction to be tension (+)
- 5 force components on A.
- 4 force components on B.
Determine whether members \(AB \) and \(BC \) are in tension or compression.

\[
\Sigma F_y = F_{BC} - 200 \text{N} = 0
\]

\[
F_{BC} = +200 \text{N}
\]

\(\Sigma F_x = -F_{BA} + 250 \text{N} = 0 \)

\[
F_{BA} = +250 \text{N}
\]

\(\bullet \) the member is in tension.
Determine the force on members AC.

\[
\begin{align*}
\sum M_A &= -(2\text{m})(200\text{N}) - (2\text{m})(400\text{N}) + (2\text{m})C = 0 \\
C &= 600\text{ N}
\end{align*}
\]

Pin C

\[
\begin{align*}
\Sigma F_y &= -F_{CA}\cos45^\circ - 200\text{N} = 0 \\
F_{CA} &= -200\sqrt{2}\text{ N. (Compression)}
\end{align*}
\]