Housekeeping

- Thurs: ME 25
- Discussion on Friday still on
- No class Friday
- No office hours last Sun of break
Slide 4

• Cables
 → when used to carry loads, weight is negligible (usually small compared to load)
 → if used for non-structural purposes (e.g. electrical wires) should include weight

• Assume
 • Perfectly flexible ⇒ No bending tension only
 • Inextensible ⇒ No change in length (geometry)

• Rigid body + we can use statics
We will consider 3 scenarios:

1. Concentrated loads
2. Distributed loads
3. Under its own weight
Cable Subjected to a Distributed Load
Draw FBD on slide

- has length ΔS
- Forces changes along length (w is constant)
- Dist load \Rightarrow resultant $= w(x) \Delta x$
 - acts some γ of Δx

$\Sigma F_x : (T + \Delta T) \cos(\theta + \Delta \theta) - T \cos \theta = 0$

$\Sigma F_y : (T + \Delta T) \sin(\theta + \Delta \theta) - w(x) \Delta x - T \sin \theta = 0$
\[EM_0: \ w(x) \Delta x \cdot k(\Delta x) - T \cos \theta \Delta y + T \sin \theta \Delta x = 0 \]

Divide all \[\Delta x \] by \[\Delta x \], take \[\lim \Delta x \to 0 \]

If \[\Delta x \to 0 \] then \[\Delta y \to 0 \]
\[\Delta \theta \to 0 \]
\[\Delta T \to 0 \]

From \[EF_x: \]
\[\frac{d}{dx} (T \cos \theta) = 0 \]

Integrate \[T \cos \theta = \text{constant} = F_H(1) \]

\[F_H \] is horizontal tensile force at any point along the cable

From \[EF_y: \]
\[\frac{d}{dx} (T \sin \theta) - w(x) = 0 \]

Integrate \[T \sin \theta = \int w(x) \, dx \]

Divide by \[(1) \]
\[
\frac{T \sin \theta}{T \cos \theta} = \frac{\int w(x) \, dx}{F_h}
\]
\[
\tan \theta = \frac{1}{F_h} \int w(x) \, dx \quad (2)
\]

From EM:
\[
\frac{dy}{dx} = \tan \theta \quad (3)
\]

\[
\tan \theta = \frac{dy}{dx} = \frac{1}{F_h} \int w(x) \, dx
\]

Integrate again:
\[
y = \frac{1}{F_h} \int \left(\int w(x) \, dx \right) \, dx
\]

\[
\text{curve for the cable (vertical position)}
\]
The cable of a suspension bridge supports half of the uniform road surface between the two towers at A and B. If this distributed loading is \(w_o \), determine the maximum force developed in the cable and the cable’s required length. The span \(L \) and sag \(h \) are known.
Approach:
Force \(\Rightarrow \) force will be a \(f(\Theta) \)

From (1) \(F_H = T \cos \Theta \)

\[T = \frac{F_H}{\cos \Theta} \]

What range of \(\Theta \) will we consider?

By symmetry \(\Rightarrow 0 < \Theta < \frac{\pi}{2} \)

\(\cos 0 = 1 \)
\(\cos \frac{\pi}{2} = 0.9 \)

\(T \uparrow \text{ as } \Theta \uparrow \); \(T_{\max} \) occurs at \(B \)

What is \(\Theta_B \)? What is \(F_H \)?

\(\Rightarrow \text{Requires shape of cable} \)
Recall, \(y = \frac{1}{F_H} \int \int (\int w(x) \, dx) \, dx \)

Here \(w(x) = w_0 \)

\(\therefore y = \frac{1}{F_H} \int (\int w_0 \, dx) \, dx \)

\(\int w_0 \, dx = w_0 x + c_1 \)

\(y = \frac{1}{F_H} \int (w_0 x + c_1) \, dx \)

\(y = \frac{1}{F_H} \left(\frac{1}{2} w_0 x^2 + c_1 x + c_2 \right) \)

at \(x = 0 \quad y = 0 \)

\(0 = \frac{1}{F_H} (0 + 0 + c_2) \)

\(\therefore c_2 = 0 \)
\[\frac{dy}{dx} = 0 \quad \text{at} \quad x = 0 \]
\[y' = \frac{1}{F_H} \left(\frac{1}{2} w_o \right) 2x + C_1 \]
\[0 = \frac{1}{F_H} (0 + C_1) \quad \therefore C_1 = 0 \]

Shape of cable:
\[y = \frac{1}{F_H} \left(\frac{1}{2} w_o \right) x^2 \]

Recall \(\tan \Theta = \frac{dy}{dx} \) \(\leftarrow \) we want this at \(B \) \((x = \frac{L}{2}) \)

\[y = \frac{w_0}{2F_H} x^2 \]

\[y' = \frac{w_0}{F_H} x = \frac{w_0 L}{2F_H} = \tan \Theta \]

\[\Theta_{\max} = \Theta_B = \tan^{-1} \left(\frac{w_0 L}{2F_H} \right) \]
\[T_{\text{max}} = \frac{F_{\text{H}}}{\cos \Theta_{\text{max}}} \]

Solve for \(F_{\text{H}} \)

\[F_{\text{H}} = \frac{W_0 x^2}{2y} \]

when \(x = \frac{L}{2} \) \(y = h \)

\[F_{\text{H}} = \frac{W_0 L^2}{2(4)(2)(h)} = \frac{W_0 L^2}{8h} \]

\[\Theta_{\text{max}} = \tan^{-1} \left(\frac{\frac{W_0 L}{8h}}{\frac{x}{2W_0 L}} \right) = \tan^{-1} \left(\frac{4h}{L} \right) \]

\[\text{Length} \]

\[L = 2 \int_{0}^{\frac{L}{2}} ds \]

\[ds = \sqrt{dx^2 + dy^2} \]

\[ds = \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \]
$$y' = \frac{w_0}{F_H} \chi = \frac{w_0 Bh}{k_0 L^2} \chi = \frac{Bh}{L^2} \chi$$

$$ds = \sqrt{1 + \left(\frac{Bh}{L^2} \chi \right)^2}$$

$$L = 2 \left[\int_0^{\chi/2} \left[1 + \left(\frac{Bh}{L^2} \chi \right)^2 \right]^{1/2} d\chi \right]$$

... use an integral table or expand and solve
Cable Subjected to its own weight

\[w = w(s) \]
Draw FBD on slide

- has length \(\Delta s \)
- Forces changes along length (\(w \) is constant)
- Dist load \(\Rightarrow \) resultant = \(w(s) \Delta s \)
 - acts some \(\theta \% \) of \(\Delta x \)

Apply equations of equilibrium:
\[
T \cos \theta = F_{\parallel} \\
T \sin \theta = \int w(s) \, ds \\
\frac{dy}{dx} = \frac{1}{F_{\parallel}} \int w(s) \, ds \\
\text{Note that} \\
ds = \sqrt{dx^2 + dy^2} \\
\text{Rearrange:} \quad \frac{dy}{dx} = \frac{1}{\sqrt{(dx/dx)^2 - 1}} \\
\text{Substitute into LHS above} \\
\sqrt{(dx/dx)^2 - 1} = \frac{1}{F_{\parallel}} \int w(s) \, ds\]
Rearrange:
\[\frac{ds}{dx} = \left[1 + \frac{1}{F_H^2} \left(\int w(s) \, ds \right)^2 \right]^{1/2} \]

Separate variables
\[x = \int \left[1 + \frac{1}{F_H^2} \left(\int w(s) \, ds \right)^2 \right]^{-1/2} \, ds \]

\[\uparrow \]

relationship between x-position and the cable segment and horizontal force

Why do we allow cables to sag

1) ↓ sag ⇒ ↑ tension

2) Thermal expansion/contraction

↑ winter is the problem
The power transmission cable weighs 5lb/ft. If h=10ft, determine the length of the cable between the two towers.
Slide 5

Approach:
- Use symmetry and solve for $\frac{1}{2}$, then double.

Diagram:
- 15 ft
- $w_0 = \frac{5}{16} \text{ ft}$
- 150 ft

- Solve for S

$$X = \int \left[1 + \frac{1}{F_h^2} \left(\int w(s) ds \right)^2 \right]^{-\frac{1}{2}} ds$$

(!) Don't freak out... you can do this!

Let's start with the inner integral...

$$\int w(s) ds = \int w_0 ds.$$
Solve for C_1 at $s=0$, slope = 0

From way up above

\[\frac{dy}{dx} = \frac{1}{F_H} \int w(s) \, ds \]

Our inner integral was:

\[\int w(s) \, ds = \int w_0 \, ds = w_0 s + C_1 \]

\[\frac{dy}{dx} = \frac{1}{F_H} (w_0 s + C_1) \]

at $s=0$, $\frac{dy}{dx} = 0$, $\therefore C_1 = 0$

\[x = \int \frac{1}{\left[1 + \frac{1}{F_H^2} (w_0 s) \right]^2} \, ds \]

Variable substitution to make this easier...

let $u = \frac{1}{F_H} (w_0 s)$
\[u = \frac{w_0}{F_H} s \]
\[du = \frac{w_0}{F_H} ds \]

Substitute back in

\[x = \int \frac{1}{\sqrt{1 + u^2}} \frac{F_H}{w_0} \, du \]
\[x = \frac{F_H}{w_0} \int \frac{1}{\sqrt{1 + u^2}} \, du \]

Integration table

\[x = \frac{F_H}{w_0} \left(\sinh^{-1} u + C_2 \right) \]

Substitute \(u \) back in

\[x = \frac{F_H}{w_0} \left(\sinh^{-1} \left(\frac{w_0}{F_H} s \right) + C_2 \right) \]
Solve for c_2

At $x = 0$ \(S = 0 \)

\[\sinh(0) = 0 \implies c_2 = 0 \]

\[x = \frac{F_+}{w_0} \sinh^{-1} \left(\frac{w_0}{F_+} \right) S \]

Rearrange

\[S = \frac{F_+}{w_0} \sinh \left(\frac{w_0}{F_+} x \right) \]

What is F_+?

Recall \(\frac{dy}{dx} = \frac{w_0}{F_+} S \)

\[= \frac{w_0}{F_+} \cdot \frac{F_+}{w_0} \sinh \left(\frac{w_0}{F_+} x \right) \]

\[\frac{dy}{dx} = \sinh \left(\frac{w_0}{F_+} x \right) \]

Integrate

\[y = \frac{F_+}{w_0} \cosh \left(\frac{w_0}{F_+} x \right) + C_3 (?!) \]
Use BC \(x = 0 \) \(y = 0 \)

\[
\therefore \quad C_3 = -\frac{F_{ht}}{w_0}
\]

\[
\therefore \quad y = \frac{F_{ht}}{w_0} \left[\cosh \left(\frac{w_0}{F_{ht}} x \right) - 1 \right]
\]

\(F_{ht} \) will be max at \(x = 150 \) ft, \(y = 15 \) ft

Solve for \(F_{ht} = 3762 \) lb

Now we can solve for \(x = 150 \) ft

\[
\delta = \frac{F_{ht}}{w_0} \sinh \left(\frac{w_0}{F_{ht}} x \right) = 151 \) ft

Then, length = 2\(\delta \)

\[
= 302 \) ft\]