Housekeeping

- **Tuesday**
 - Q 5 start day
- **Wednesday**
 - PL 18
- **Thursday**
 - ME 19
- **Friday**
 - Oct 28: last class day TAM 210 (review?)
 - Oct 30,31: TAM 210 office hours 5-7pm 112 Transp Building
- **Sunday**
 - WA 10 (last 210 WA)
- **Next week**
 - TAM 211 usual stuff
 - TAM 210 FINAL (Nov 1 – Nov 5) – sign up on CBTF

The tunnel ends!! (for some)
Quiz 4

Test statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
<td>562</td>
</tr>
<tr>
<td>Mean score</td>
<td>68.1%</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>27.2%</td>
</tr>
<tr>
<td>Minimum score</td>
<td>0.0%</td>
</tr>
<tr>
<td>Median score</td>
<td>77.5%</td>
</tr>
<tr>
<td>Maximum score</td>
<td>100.0%</td>
</tr>
<tr>
<td>Number of 0%</td>
<td>6 (1.1% of class)</td>
</tr>
<tr>
<td>Number of 100%</td>
<td>46 (8.2% of class)</td>
</tr>
</tbody>
</table>
Draw the shear and moment diagrams for the simply supported beam.
Slide 3

Start from left:

1. \(A_y \rightarrow V \) shift
 - constant \(w \)
 - \(\Rightarrow V = f(x) \)

2. \(w \) is neg slope \(V \)
 - \(\Rightarrow \) neg
 - \(\Delta V = \int w \)
 - \(\Delta V = wa \)

3. No change

4. \(\downarrow B_y \Rightarrow \) shift \(V \)
 - No change

\[V(x) \]

\[M(x) \]
Slide 3

Bending

1. $M = 0$
2. $V = f(x)$
 - $M = f(x^2)$
 - Slope + \[b/c \] $V > 0$
 - Slope - \[b/c \] slope $V(-)$

$V \rightarrow \text{const}, \therefore M = f(x)$
- $V < 0: \text{slope } M(-)$
- $\Delta M_3 = \int_3^4 V(x)$

$\Delta M_1 = \int_1^2 V(x)$

$\Delta M_2 = \int_2^3 V(x)$

$\Delta M_3 = \int_3^4 V(x)$
Draw the shear and moment diagrams for the beam.
SLIDE 9

1. $A_N \rightarrow \text{shifts } V$
2. No Δ
3. No Δ
4. 100 lb \(\rightarrow \text{shifts } V \downarrow$

1. $M_A \rightarrow \text{shifts } M$

 $M = \int M = -M A$

2. $M = f(x)$

 $V = \text{constant}$

 $\Delta M = \int V(x) dx$

3. $800 \text{ lb} \rightarrow \text{shifts } M$

4. $V = \text{constant}$

 $M = f(x)$

 $\Delta M = \int V(x) dx$
Draw the shear and moment diagrams for the beam.
Wherever there is an external concentrated force, or a concentrated moment, there will be a change (jump) in shear or moment respectively.
Relations Among Load, Shear and Bending Moments

Consider the simply supported beam.

- Subject to several concentrated forces, moments, distributed loads

The shear force is given by Δf:

\[V - (V + \Delta V) + \Delta x w(x) = 0 \]

\[\Delta V = w(x) \Delta x \]

In the limit of $\Delta x \to 0$

\[\frac{dv}{dx} = w(x) \]

\[\Delta V = \int w(x) \, dx \]

Slope of shear = distributed load intensity

Change in = area under shear load curve

Δx
Relations Among Load, Shear and Bending Moments

Consider the simply supported beam subject to several concentrated forces, moments, distributed loads

Consider the beam element.

\[M(x) = \int V(x) \, dx \]

\[\frac{dM}{dx} = V \]

\[\Delta M = \int V(x) \, dx \]

Slope of moment diagram = Shear

Change in moment = Area under Shear diagram
Wherever there is an external concentrated force, or a concentrated moment, there will be a change (jump) in shear or moment respectively.

The shear force is
\[\Delta V = f \]

\[V - V - \Delta V + F = 0 \]

The moment is
\[\Delta M = M_0 \]

\[M + \Delta M - M - M_0 - \Delta x V = 0 \]