Housekeeping

- Today
 - Extra credit due (see Piazza)
- Tuesday
 - PL HW 6
 - First quiz day
- Thursday
 - ME HW 7
- Saturday
 - Last quiz day
- Sunday
 - WA due
Moment of a force – scalar formulation

The **moment of a force about a point** provides a measure of the **tendency for rotation** (sometimes called a torque).

Moment of a force – vector formulation

The **moment of a force about a point** provides a measure of the **tendency for rotation**.

The moment of a force \(\vec{F} \) about point \(O \), or actually about the moment axis passing through \(O \) and perpendicular to the plane containing \(O \) and \(\vec{F} \), can be expressed using the cross (vector) product, namely:

\[
\vec{M}_o = \vec{r}_o \times \vec{F}
\]

Position vector from \(O \) to any point along line of action of \(\vec{F} \)

Scalar magnitude

\[
|\vec{M}| = |\vec{r}| |\vec{F}| \sin \theta
\]

Vector

\[
\vec{M} = |\vec{r}| |\vec{F}| \sin \theta \quad (\vec{r}_o \times \vec{F})
\]
Moment of a force about a specified axis

\[\mathbf{M}_O = \mathbf{r} \times \mathbf{F} \]
Moment of a force about specified axis
Determine the moment of the force F about the axis extending between A and C.

The force $F = \{4i + 12j - 3k\}$ lb acts through point B. The diagram shows the dimensions 4 ft, 3 ft, and 2 ft.
Couples ...
Moment of a couple
To hipster or not to hipster...
Determine the magnitude and coordinate direction angles of the couple moment. The pipe line assembly lies in the x-y plane. Assume $F = 80\, \text{N}$.

![Pipe line assembly diagram]
Determine the couple moment acting on the pipe
Moving a force on its line of action

Moving a force from A to B, when both points are on the vector’s line of action, does not change the external effect.

Hence, a force vector is called a sliding vector.

However, the internal effect of the force on the body does depend on where the force is applied.
Moving a force off of its line of action

\[M = Fd \]
Given: A 450 N force couple acting on the pipe assembly.

Find: The couple moment in Cartesian vector notation.
Given: Two couples act on the beam with the geometry shown and $d = 4$ ft.

Find: The resultant couple
Equipollent (or equivalent) force systems

A force **system** is a collection of **forces** and **couples** applied to a body.

Two force systems are said to be **equipollent** (or equivalent) if they have the **same resultant force** AND the **same resultant moment** with respect to any point \(P \).
What is the equivalent system?
Special cases of equivalent systems

If F_R perpendicular to $(M_R)_0$ and $F_R \neq 0$, then an equivalent system consisting of ONLY a single force can always be found. There are three possibilities:

1) Concurrent Force System
The lines of action of all the forces intersects at a common point O.

![Diagram of concurrent force system](image)
2) Coplanar Force System

How can we replace this force system by an equivalent force \(\mathbf{F}_R \) and a couple moment about point \(O \) \((\mathbf{M}_R)_O \)?

(a) \hspace{2cm} (b)
3) Parallel Force System

\[\text{Parallel Force System} \]

\[F_1 + F_2 + F_3 = 0 \]

\[\text{Moments Coupless} \]

\[L_9 - \text{Moments Coupless} \]

\[23 \]