Housekeeping

- Practice quiz available on PL website
- Tuesday
 - Prairie Learn HW2
 - First day for QUIZ (short session because of holiday)
- Thursday
 - Mastering engineering HW3
- Friday (5pm)
 - Last quiz time
- Sunday
 - WA2
Recap

• Cartesian vectors

• Unit vectors

• Resultant forces
<clicker time>
Position vectors

A position vector \(\mathbf{r} \) is defined as a fixed vector which locates a point in space relative to another point. For example,

\[
\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}
\]

expresses the position of point \(P(x,y,z) \) with respect to the origin \(O \).

The position vector \(\mathbf{r} \) of point \(B \) with respect to point \(A \) is obtained from

\[
\mathbf{r}_B = \mathbf{r} + \mathbf{r}_A
\]

\[
\mathbf{r} = \mathbf{r}_B - \mathbf{r}_A
\]

\[
\mathbf{r} = (x_B\mathbf{i} + y_B\mathbf{j} + z_B\mathbf{k}) - (x_A\mathbf{i} + y_A\mathbf{j} + z_A\mathbf{k})
\]

\[
\mathbf{r} = (x_B-x_A)\mathbf{i} + (y_B-y_A)\mathbf{j} + (z_B-z_A)\mathbf{k}
\]
Example

The ring at D is midway between points A and B. Determine the lengths of wires AD, BD and CD.
The force vector \(F \) acting along the rope can be defined by the unit vector \(u \) (defined the direction of the rope) and the magnitude of the force.

\[
F = F \, u
\]

The unit vector \(u \) is specified by the position vector:

The man pulls on the cord with a force of 70 lb. Represent the force \(F \) as a Cartesian vector.
Dot (or scalar) product

The dot product of vectors \mathbf{A} and \mathbf{B} is defined as such

$$\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos(\theta)$$

Laws of operation:

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

$$\alpha(\mathbf{A} \cdot \mathbf{B}) = \alpha \mathbf{A} \cdot \mathbf{B} = \mathbf{A} \cdot \alpha \mathbf{B}$$

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

Cartesian vector formulation:

$$\mathbf{A} \cdot \mathbf{B} = (A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}) \cdot (B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k})$$

Note that:

$$\mathbf{i} \cdot \mathbf{j} = 0 \quad \mathbf{i} \cdot \mathbf{i} = 1$$
Example

Given: The force acting on the hook at point A.

Find: The angle between the force vector and the line AO, and the magnitude of the projection of the force along the line AO.
Example

i-Clicker

L4 - Position Vectors Force along a line Cross product
Example

Determine the projected component of the force vector F_{AC} along the axis of strut AO. Express your result as a Cartesian vector.

![Diagram](image.png)

- $F_{AB} = 70 \text{ lb}$
- $F_{AC} = 60 \text{ lb}$
Vectors come in many packages

Rectangular components of a vector

Cartesian vector representation

Cartesian vector using direction cosines

Cartesian vector using unit vector

Cartesian position vectors
i>clicker time
Cross (or vector) product

The cross product of vectors \mathbf{A} and \mathbf{B} yields the vector \mathbf{C}, which is written

$$\mathbf{C} = \mathbf{A} \times \mathbf{B}$$

The magnitude of vector \mathbf{C} is given by:

The vector \mathbf{C} is perpendicular to the plane containing \mathbf{A} and \mathbf{B} (specified by the right-hand rule). Hence,

$$\mathbf{C} = .$$
Cross (or vector) product

The right-hand rule is a useful tool for determining the direction of the vector resulting from a cross product. Note that a vector crossed into itself is zero, e.g., $i \times i = 0$

Considering the cross product in Cartesian coordinates

$$A \times B = (A_x i + A_y j + A_z k) \times (B_x i + B_y j + B_z k)$$
Cross (or vector) product

Also, the cross product can be written as a determinant.

\[
\mathbf{A} \times \mathbf{B} = \begin{vmatrix}
i & j & k \\
A_x & A_y & A_z \\
B_x & B_y & B_z \\
\end{vmatrix}
\]

Each component can be determined using 2×2 determinants.
Chap 2 - recap

- Scalars –
- Vectors –
- Dot product –
- Cross product –
Chapter 3: Equilibrium of a particle
Applications

For a spool of given weight, how would you find the forces in cables AB and AC? If designing a spreader bar (BC) like this one, you need to know the forces to make sure the rigging (A) doesn’t fail.
Equilibrium of a particle

According to Newton’s first law of motion, a particle will be in **equilibrium** (that is, it will remain at rest or continue to move with constant velocity) if and only if

$$\sum F = 0$$

where $\sum F = 0$ is the resultant force vector of all forces acting on a particle.

In three dimensions, equilibrium requires:
Free body diagram
Equilibrium of a particle (cont.)

Contact force in smooth surface:

\[\theta_1 \]

\[\theta_2 \]
i>clicker question