To do ...

- HW 9 ME (extended) due Sat
- WA 5 due Sun
- HW 10 PL due Tues
- Quiz 3 sign up – DO IT!
Quiz 2 results

- Practice PL HW on your own
- Monitor your time
- Use matlab
- Read each question, write givens, unknowns, draw FBD

- Exam reflections
 - What did you do to prepare for the quiz?
 - What concepts did you struggle with?
 - What can you do differently to prepare for the next quiz?

Median: 75%
Perfect scores: 20%

Great Job 😊
Thank you for your comments!!

Distributed loads

Equivalent systems

Homework
PL ? ME

Quizzes

Daily office hours are held in MEB 335 on Mondays, and Grainger 429 on all other days according to the schedule below. Office hours start in Week 1 (Tuesday, August 23) of the semester.

<table>
<thead>
<tr>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5</td>
<td>Robin, Vedant,</td>
<td>Qian, Shuvankar</td>
<td>John,</td>
<td>John,</td>
<td>Robin, Jo, Meng Wai</td>
</tr>
<tr>
<td></td>
<td>Yufei, Meng Wai</td>
<td></td>
<td>Meng Wai</td>
<td>Robin,</td>
<td>Phillip, Jeff</td>
</tr>
<tr>
<td>6-7</td>
<td>Namjung, Vedant</td>
<td>Qian, Shuvankar</td>
<td>Spencer,</td>
<td>Alex,</td>
<td>Namjung, Meng Wai</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eugene,</td>
<td>Cody,</td>
<td>Namjung, Jo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Meng Wai</td>
<td></td>
<td>Subhadeep</td>
</tr>
<tr>
<td>8-9</td>
<td>Sujan, Brian</td>
<td>Subhadeep, Kyle</td>
<td>Sujan,</td>
<td>Sujan,</td>
<td>Hanyang, Shuvankar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spencer,</td>
<td>Joseph,</td>
<td>Vedant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shuvankar</td>
<td></td>
</tr>
</tbody>
</table>

More examples
Less examples

My voice!!

OH YEAH!!
Two-force members

In the cases above, members AB can be considered as two-force members, provided that their weight is neglected.

- Any member with only two forces applied
- To be in equilibrium:
 \[\sum F_x = 0 \]
 \[\sum F_y = 0 \]
 \[\sum M_o = 0 \]

- Line of action is the line connecting where the forces are applied.
- \(|F_A| = |F_B| \)
- \(F_A + F_B = 0 \)

To therefore, you know the direction of \(F_A \) and \(F_B \).
If the crane boom and truck have a mass of 18 Mg and 1.8 Mg at \(G_1 \) and \(G_2 \), respectively, determine the reactions at each of the four outriggers as a function of the boom angle when the boom is supporting a load having a mass of 1.2 Mg.

Idealized Model

- Draw x-y axis and FBD.
- Sum forces and moments.
- Number of unknowns

Sum Forces:

\[
\begin{align*}
\sum F_x & : \text{ none} \\
\sum F_y & : N_A + N_B - G_1 - G_2 - W = 0
\end{align*}
\]

Sum Moments:

\[
\sum M_B : (1)G_1 - 4N_A - (6\sin \theta - 2)G_2 - (12.25\sin \theta - 2)W = 0
\]

* 2 unknowns : 2 equations! OK!

\[
N = \frac{1}{4} \left(G_1 - (6\sin \theta - 2)G_2 - (12.25\sin \theta - 2)W \right)
\]
\[N_A = \frac{1}{4} \left(G_1 + 2G_2 + 2w - (6G_2 + 12.25w) \sin \theta \right) \]

\[N_A = 58860 - 62539 \sin \theta \]

Using \(\geq f \),

\[N_B = G_1 + G_2 + W - N_A \]

\(N_A \) and \(N_B \) both depend on \(\theta \).

* USE MATLAB! \[\times 10^3 \]

Critical Angle for tipping

Q: What does \(N_A < 0 \) mean?