Announcements

- Written Exam: Thursday, November 8, 7-8:50pm
- If you submitted a request for conflict exam via excused absence form and have not received a conflict exam time, contact the course staff team ASAP via Piazza.

☐ Upcoming deadlines:
- Study for written exam

Vote Early: Illini Union - Room 404
Center of Gravity and Centroid
Goals and Objectives

• Understand the concepts of center of gravity, center of mass, and centroid.
• Be able to determine the location of these points for a body.
Center of gravity

To design the structure for supporting a water tank, we will need to know the weight of the tank and water as well as the locations where the resultant forces representing these distributed loads act.

How can we determine these resultant weights and their lines of action?
Center of gravity

teachersource.com

tndrbox.net

© Paramount Pictures

thegadgetflow.com
Center of gravity

\[W = \int dw = \int w \, dw \]

\[M_{xy} = \int y \, dw \]

\[\bar{x} = \frac{M_{xy}}{W} = \frac{\int x \, dw}{\int w \, dw} \]

Equivalent Force & Location Review

\[F_R = \sum F_i \]

\[M_{Ro} = -x_1 F_1 - x_2 F_2 + x_3 F_3 \]

\[d = \frac{M_R}{F_R} = \frac{\sum x_i F_i}{F_R} \]

\[F_R = \int w \, dx \]
Center of gravity

A body is composed of an infinite number of particles, and so if the body is located within a gravitational field, then each of these particles will have a weight dW.

The center of gravity (CG) is a point, often shown as G, which locates the resultant weight of a system of particles or a solid body.

From the definition of a resultant force, the sum of moments due to individual particle weight about any point is the same as the moment due to the resultant weight located at G.
Center of gravity

Is it better to have front wheel or rear wheel drive?

\[F_{BD} \quad \text{* Note: max friction } F_s = \mu sN \]

\[\begin{align*}
\text{EoE} \quad & \begin{cases}
\cdot \text{Find } N_A \text{ using } \sum M_B = +Wx_g - N_AX_A = 0 \\
\cdot \text{Find } N_B \text{ using } \sum F_y = 0 = N_A + N_B - W = 0.
\end{cases} \\
\rightarrow \quad & N_A = \frac{WX_g}{X_A}, \quad N_B = W - N_A = W - W\left(1-\frac{X_g}{X_A}\right)
\end{align*} \]

\[\frac{X_g}{X_A} > (1-\frac{X_g}{X_A}) \rightarrow N_A > N_B \]

\[\therefore F_{SA} > F_{SB}, \text{ front wheels can create more friction} \]
Center of Area

- Object w/ constant depth will have center of area coincide with center of gravity.
Center of Mass

\[\bar{x} = \frac{\int \tilde{x} \, dm}{\int dm} \]

\[\bar{y} = \frac{\int \tilde{y} \, dm}{\int dm} \]

\[\bar{z} = \frac{\int \tilde{z} \, dm}{\int dm} \]

Center of Volume

\[\bar{x} = \frac{\int \tilde{x} \, dV}{\int dV} \]

\[\bar{y} = \frac{\int \tilde{y} \, dV}{\int dV} \]

\[\bar{z} = \frac{\int \tilde{z} \, dV}{\int dV} \]

Center of Area

\[\bar{x} = \frac{\int \tilde{x} \, dA}{\int dA} \]

\[\bar{y} = \frac{\int \tilde{y} \, dA}{\int dA} \]

\[\bar{z} = \frac{\int \tilde{z} \, dA}{\int dA} \]
Centroid

The centroid, C, is a point defining the geometric center of an object.

The centroid coincides with the center of mass or the center of gravity only if the material of the body is homogeneous (density or specific weight is constant throughout the body).

If an object has an axis of symmetry, then the centroid of object lies on that axis.

In some cases, the centroid may not be located on the object.
Locate the centroid of the area.

\[\bar{x} = \frac{\int x \, dA}{\int dA}, \quad \bar{y} = \frac{\int y \, dA}{\int dA} \]

\[\bar{x} = \text{x-centroid location of the element} \]
\[\bar{y} = \text{y-centroid location of the element} \]
\[dA = \text{area of the element} \]
\[b = dx, \quad h = y = x^2 \]
\[\rightarrow dA = y \, dx \quad \text{or} \quad x^2 \, dx \]

\[\hat{x} = x \]
\[\hat{y} = \frac{1}{2} y = \frac{1}{2} x^2 \]