Announcements

- Check course schedule for assignments, activities and written exams dates (especially if you’re in TAM 210)

- Upcoming deadlines:
 - Friday (10/19)
 - Written Assignment
 - Tuesday (10/23)
 - PrairieLearn HW
Recap: Internal Loadings

Structural Design: need to know the loading acting within the member in order to be sure the material can resist this loading

Objective

- Determine the internal loadings in members using the method of sections
Internal Forces and Moment

Normal force (N):

Shear force (V):

Bending moment (M):
Sign conventions

Positive normal force

* Pointing away from the body

Positive shear force

* Creates a clockwise rotation on the body

Positive moment

* Smiley face

\[\sum F_x = V = 0 \]
\[\sum M_a = M + V_a = 0 \]
Procedure for analysis

1. Find support reactions (free-body diagram of entire structure)
2. Pass an imaginary section through the member
3. Draw a free-body diagram of the segment that has the least number of loads on it
4. Apply the equations of equilibrium

Example: Find the internal forces and moments at B (just to the left of P) and at C (just to the right of P)

\[\sum F_x = D_x = 0 \]
\[\sum F_y = A - 6\text{kN} + D_y = 0 \rightarrow D_y = 1\text{kN} \]
\[\sum M = (6\text{kN})(6\text{m}) - A(9\text{m}) + 9\text{kN}\cdot\text{m} = 0 \]
\[\rightarrow A = 5\text{kN} \]

2) For point B, make a cut at B.

\[\sum F_x = N = 0 \]
\[\sum F_y = 5\text{kN} - V = 0 \rightarrow V = 5\text{kN} \]
\[\sum M_A = -V(3\text{m}) + M = 0 \]
\[M = 3V = 15\text{kN}\cdot\text{m} \]
Determine the normal force, shear force, and bending moment at \(B \).
Determine the normal force, shear force, and bending moment at B.
Determine the normal force, shear force, and bending moment at B.

Do not use the "equivalent" system to generate the section FBD!
Determine the normal force, shear force, and bending moment at D.

1. **FBD (left piece)**
 - \(\sum M_A = -8 \text{kip} \cdot (8 \text{ft}) + B (24 \text{ft}) + 40 \text{kip} \cdot \text{ft} = 0 \)
 - \(B = 1 \text{ kip} \)

2. **FBD (right piece)**
 - \(\sum F_x = -N = 0 \)
 - \(\sum F_y = V + 1 \text{ kip} = 0 \)
 - \(\sum M_B = 40 \text{ kip} \cdot \text{ft} - M - V(8 \text{ft}) = 0 \)
 - \(N = 0 \)
 - \(V = -1 \text{ kip} \)
 - \(M = 48 \text{ kip} \cdot \text{ft} \)

Focus on the right piece: we only need B support.