Announcements

- Quiz 1 Next Week!
- If this is your first week check out the course website for all the logistics you need to know:

https://courses.engr.illinois.edu/tam210

- □ Upcoming deadlines:
- Friday (9/7 TODAY!)
 - Writtein Assignment #1
- Tuesday (9/11)
 - PL HW
- Friday (9/14)
 - Writtein Assignment #2

L5 - Force along a line Cross product

Goals and Objectives

- Practice following general procedure for analysis.
- Introduce the concept of a free-body diagram for an object modeled as a particle.
- Solve particle equilibrium problems using the equations of equilibrium.

L5 - Force along a line Cross product

Applications

For a spool of given weight, how would you find the forces in cables AB and AC?

If designing a spreader bar (BC) like this one, you need to know the forces to make sure the rigging (A) doesn't fail.

General procedure for analysis

- 1. Read the problem carefully; write it down carefully.
- 2. MODEL THE PROBLEM: Draw given diagrams neatly and construct additional figures as necessary.
- 3. Apply principles needed.
- 4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
- 5. Substitute numbers. Provide proper units *throughout*. Check significant figures. Box the final answer(s).
- 6. See if answer is reasonable.

Idealizations

Pulleys are (usually) regarded as frictionless; then the tension in a rope or cord around the pulley is the same on either side.

Idealizations

Springs are (usually) regarded as linearly elastic; then the tension is proportional to the change in length s.

Linearly elastic spring

Idealizations

Contact force in smooth surface:

Force (normal) will always be I to the surface

Equilibrium of a particle

According to Newton's first law of motion, a particle will be in equilibrium (that is, it will remain at rest or continue to move with constant velocity) if and only if

In three dimensions, equilibrium requires:

Coplanar forces: if all forces are acting in a single plane, such as the "xy" plane, then the equilibrium condition becomes (20)

13

11:42 AM

If the spring DB has an unstretched length of 2 m, determine the stiffness of the spring to hold the 40- 2 m kg crate in the position shown.

3 m

2 m

m=40 kg Find: K

EOE 2Fx=0=Tx+F4

$$= -T_{(65454545)}$$
or = $-T(\frac{12}{2}) + f_{5}(\frac{3}{13}) = 0$

$$\neg T = F_s\left(\frac{3}{\sqrt{15}}\right)\left(\frac{2}{\sqrt{26}}\right) = F_s\left(\frac{6}{\sqrt{26}}\right) O$$

Lec05Sep07 Page 14

or =
$$T(\frac{J_2}{2}) + f_s(\frac{2}{J_3}) - W = 0$$
 @

Substitute $@ \to @$
 $f_s(\frac{6}{Dz})(\frac{J_2}{2}) + f_s(\frac{J_3}{J_3}) - W = 0$
 $f_s(\frac{5}{Dz})(\frac{J_2}{2}) + f_s(\frac{J_3}{J_3}) - W = 0$
 $f_s(\frac{3}{Dz})(\frac{J_3}{2}) + \frac{J_3}{J_3} = W \to f_s = \frac{W}{(\frac{5}{J_3})}$

Apply linear spring assumption: $f_s = ks$.

 $s = l - l_s = J_3 m - 2m$
 $f_s = k(J_3 m - 2m)$ @

Substitute $@ \to @$

Substitute in numbers

 $k(J_3 m - 2m) = W(\frac{J_3}{5}) \to k = \frac{(40 \text{ kg})(9.81 \frac{m}{5})J_3}{5(J_3 - 2)m}$
 $k = (WJ_3)/[s(J_3 m - 2m)]$