Name:

TAM 210/211 Written Assignment 1 (due on Sep 22)

The OBJECTIVE of this written assignment is to practice drawing free-body diagrams.
DIRECTION: This is a free-body diagram only assignment. Draw a free body diagram of the specified part, or the most appropriate part for solving the problem. Grading criteria includes: 1) Clearly identified body of interest; 2) properly labeled external forces on the body; 3) geometry of the forces; 4) coordinate system.

Springs: The magnitude of force exerted on a linearly elastic spring which has a stiffness k and is deformed a distance $s=l-l_{0}$, measured from its unloaded position, is

$$
F_{\text {spring }}=k s
$$

Cables: All cables will be assumed to have negligible weight and they cannot stretch. A cable can support only a tension or "pulling" force, and this force always acts in the direction of the cable.

Pulleys: The tension force developed in a continuous cable which passes over a frictionless pulley must have a constant magnitude to keep the cable in equilibrium.

Sample Problem: The cords ABC and BD can each support a maximum load of 100 lb . Determine the maximum weight of the crate, and the angle u for equilibrium.

Sample Solution

Problems 1: Draw a free-body diagram of the ring B.

Problem 2: Draw a free-body diagram of the ring A.

Problem 3: Draw a free-body diagram of the ring A.

Problem 4: Draw a free-body diagram of the pulley O.

Problem 5: Draw a free-body diagram of both pulleys.

Problem 6: The man attempts to pull down the tree using the cable and small pulley arrangement shown. If the tension in $A B$ is T_{A}, draw the free-body diagram for determining the tension in cable $A D$ and the angle θ.

Problem 7: Determine the maximum weight of the crate that can be suspended from cables $A B, A C$, and $A D$ so that the tension developed in any one of the cables does not exceed 250 lb . Draw the appropriate free-body diagram to solve this problem.

Problem 8: The man pulls with force F. Draw the free-body diagram for solving tension in cable $A C$.

Problem 9: The load at A creates a force of 60 lb in wire AB. Draw the free-body diagram for determining the weight of the barrel.

Problem 10: The lamp has a weight of W and is supported by the six cords connected together as shown. Draw the free-body diagram for determining the tension in cord $A B$. Cord BC is horizontal.

