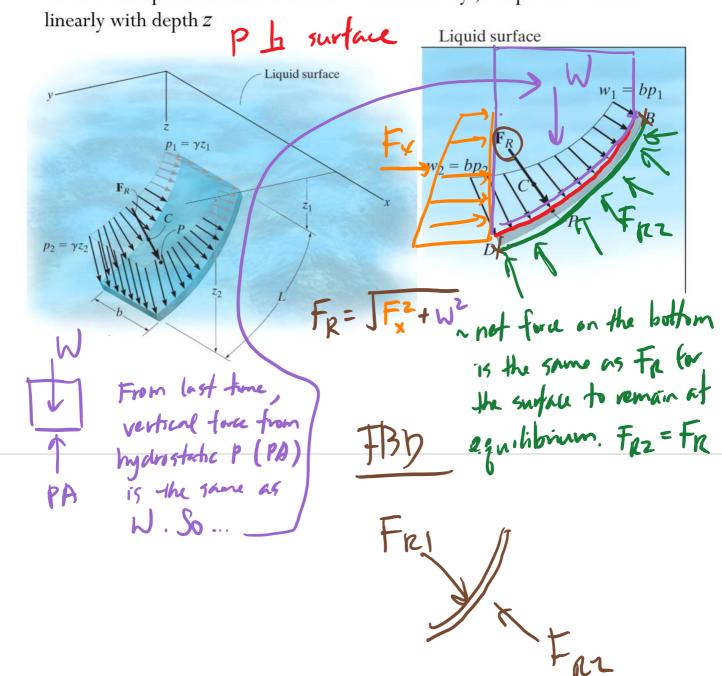
Announcements


- CBTF Quiz 7 this week!
- Last day of office hours and Piazza help: Wed, Dec. 13

- ☐ Upcoming deadlines:
- Tuesday (12/5)
 - PL HW24
- Saturday (12/9)
 - ME HW27

Recap: Fluid Pressure

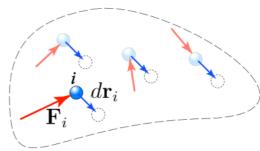
For an incompressible fluid at rest with mass density , the pressure varies

When a rectangular block of wood of cross sectional area A, height h, and mass m is placed in a lake. How far below the surface z is the bottom of

the block? ($\rho_{\text{water}} = 1 \text{ Mg/m}^3$)

What happens when you replace the block of wood with block of steel?

Chapter 11: Virtual Work Main goals and learning objectives


- Introduce the principle of virtual work
- Show how it applies to determining the equilibrium configuration of a series of pin-connected members

Definition of Work (ひ)

Work of a force

A force does work when it undergoes a displacement in the direction of the line of action.

The work dU produced by the force ${\pmb F}$ when it undergoes a differential displacement $d{\pmb r}$ is given by

$$\frac{dU = \mathbf{F} \cdot d\mathbf{r}}{F} = F \cos \theta \, d\mathbf{r}$$

$$\frac{dV}{F} = F \cdot d\mathbf{r}$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

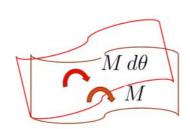
$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

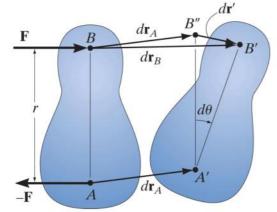
$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$

$$\frac{dV}{F} = \frac{1}{2} \left(\frac{1}{2} \cos \theta \right) \cos \theta$$


$$\frac{dV}{F} = \frac{1}$$


- only FIIx does work.

Advantage: only consider forces that do work in analysis.

Definition of Work

Work of a couple $dU = M\mathbf{k} \cdot d\theta \,\mathbf{k} = M \,d\theta$

Since F and dry have same direction, F does positive work.

-F & dry have opposition directions,
so -F does negative work here.
Hence, not work done by force couple due to translate is zero.

scalu