## Announcements

- CBTF Quiz 7 next week

UUpcoming deadlines:

- Friday (12/1)
- WA \#4
- Saturday (12/2)
- ME HW25
- Tuesday (12/5)
- PL HW24


Page 3
Friday, December 1, 2017

Recap: Fluid Pressure


Direction of $p \perp$ surface

The factor of safety for tipping of the concrete dam is defined as the ratio of the stabilizing moment due to the dam's weight divided by the overturning moment about $O$ due to the water pressure. Determine this factor if the concrete has a density of $\rho_{\text {conc }}=2.5 \mathrm{Mg} / \mathrm{m}^{3}$ and for water $\rho_{\text {water }}=1 \mathrm{Mg} / \mathrm{m}^{3}$.


$$
\begin{aligned}
& W=\rho V g \\
& V=A l \\
& =\frac{1}{2}(6 m)(1 m+4 m) l \\
& \Rightarrow \omega=\rho\left[\left(15 \mathrm{~m}^{2}\right) \ell\right] g=367,96 \mathrm{~W} \\
& r_{p}=2 m \\
& \Rightarrow M_{p}=F_{p} \gamma_{p} \\
& r_{\omega x}=\frac{\sum \tilde{x} W_{i}}{\sum W_{i}}=\frac{(2 m)\left(9 m^{2}\right)+(3.5 m)\left(6 m^{2}\right)}{15 m^{2}} \\
& =353.2 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow M_{\omega}=W r_{\omega} \quad \Rightarrow F . S=\frac{W r_{w}}{F_{p} r_{p}}=2.71 \\
& =956.4 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Determine the magnitude of the resultant force acting on on the $10-\mathrm{m}$ wide dam due to hydrostatic pressure.

$$
\begin{aligned}
& \text { ( } \left.\rho_{\text {water }}=\widetilde{1 \mathrm{Mg}} / \mathrm{m}^{3}\right) \\
& \vec{F}_{R}=\vec{F}_{x}+\vec{F}_{y} \\
& =\vec{F}_{x}+\vec{W}_{L} \\
& F_{x}=\frac{1}{2} \omega d \\
& =\frac{[\rho g(3 \mathrm{~m})(10 \mathrm{~m})](3 \mathrm{~m})}{2} \\
& \rightarrow \rightarrow \\
& =44.145 \mathrm{kN} \\
& \text { 定 } \\
& \stackrel{W}{1} \Rightarrow F_{R}=W \\
& F_{y}=W=\rho V g, \quad V=A(10 \mathrm{~m}) \\
& A=(3 m)^{2}-\frac{\pi(3 m)^{2}}{4}-A_{i} \\
& F_{\gamma}=\rho\left(9 m^{2}-\frac{9 \pi}{4} m^{2}\right)(10 \mathrm{~m}) g=18.95 \mathrm{kN} \\
& \vec{F}_{R}=F_{x} \uparrow-F_{y} \hat{\jmath}, F_{R}=48 \mathrm{kN}
\end{aligned}
$$

Determine the magnitude of the resultant force acting on gate $A B C$ due to hydrostatic pressure. The gate has a width of 1.5 m .

$$
\left(\rho_{\text {water }}=1 \mathrm{Mg} / \mathrm{m}^{3}\right)
$$

Vertical component


$$
\begin{aligned}
& W_{1}=\rho g V_{1}, V_{1}=\left(1.25+\frac{2}{\tan 60}\right)(1.5 \mathrm{~m})(1.5 \mathrm{~m}) \\
& W_{2}=\rho g V_{2}, V_{2}=\frac{1}{2}\left(\frac{2}{\tan 600}\right)(2 \mathrm{~m})(1.5 \mathrm{~m}) \\
& \left.W_{1}=53.08 \mathrm{kN}\right\} F_{y}=70.07 \mathrm{kN} \\
& \left.W_{2}=16.99 \mathrm{kN}\right\}, 1
\end{aligned}
$$

Horizontal Component
(1) Equivalent force from the triangular distributed force
(1-2) $\left.\quad F_{x_{1}}=\frac{1}{2}\left(\omega_{2}-\omega_{1}\right)(2 \mathrm{~m}) \quad \omega_{2}=\rho g h_{1} l=[\mathrm{gg}(3.5 \mathrm{~m}))\right](1.5 \mathrm{~m})$
$\omega_{2}$

$$
\begin{aligned}
& F_{x 2}=(w,)(2 \mathrm{~m}) \\
\Rightarrow & F_{x}=F_{x_{1}}+F_{x 2}=73.58 \mathrm{kN} \\
\Rightarrow & F=\sqrt{F_{x}+F_{y}^{2}}=102 \mathrm{kN}
\end{aligned}
$$

$$
w_{1}=\rho g h_{2} l=[\rho g(1.5 \mathrm{~m})](1.5 \mathrm{~m})
$$

Page 9

When a rectangular block of wood of cross sectional area A, height $h$, and mass m is placed in a lake. How far below the surface z is the bottom of the block? $\left(\rho_{\text {water }}=1 \mathrm{Mg} / \mathrm{m}^{3}\right)$

Side View


$$
\begin{aligned}
\frac{E_{0} E}{\sum F_{y}} & =F_{R}-w=0 \\
F_{R} & =P(A) \\
& =\rho_{0} g z(A)
\end{aligned}
$$



