Announcements

- CBTF Quiz 6 this week
- No class on Friday :) (But Friday discussions still meet)
- Written Assignment \#4 - Due Friday, Dec. 1
\square Upcoming deadlines:
- Wednesday (11/15)
- PL HW22
- Thursday (11/16)
- ME HW23

Moment of Inertia for Areas

Consider three different possible cross sectional shapes and areas for the beam RS. For the given vertical loading P on the beam, which shape will develop less internal stress and deflection?

Moment of inertia of composite

- If individual bodies making up a composite body have individual areas A and moments of inertia I computed through their centroids, then the composite area and moment of inertia is a sum of the individual component contributions.

Rectangle		$\begin{aligned} & \bar{I}_{x^{\prime}}=\frac{1}{12} b h^{3} \\ & \bar{I}_{y^{\prime}}=\frac{1}{12} b^{3} h \\ & I_{x}=\frac{1}{3} b h^{3} \\ & I_{y}=\frac{1}{3} b^{3} h \\ & J_{C}=\frac{1}{12} b h\left(b^{2}+h^{2}\right) \end{aligned}$
Triangle		$\begin{aligned} \bar{I}_{x^{\prime}} & =\frac{1}{38} b h^{3} \\ I_{x} & =\frac{1}{12} b h^{3} \end{aligned}$
Circle		$\begin{aligned} & \bar{I}_{x}=\bar{I}_{y}=\frac{1}{4} \pi r^{4} \\ & J_{O}=\frac{1}{2} \pi r^{4} \end{aligned}$
Semicircle		$\begin{aligned} I_{x} & =I_{y}=\frac{1}{8} \pi r^{4} \\ J_{O} & =\frac{1}{4} \pi r^{4} \end{aligned}$
Quarter circle		$\begin{aligned} & I_{x}=I_{y}=\frac{1}{16} \pi r^{4} \\ & J_{O}=\frac{1}{8} \pi r^{4} \end{aligned}$
Ellipse		$\begin{aligned} & \bar{I}_{x}=\frac{1}{4} \pi a b^{3} \\ & \bar{I}_{y}=\frac{1}{4} \pi a^{3} b \\ & J_{O}=\frac{1}{4} \pi a b\left(a^{2}+b^{2}\right) \end{aligned}$

Find the moment of inertia about its centroid:

$$
\bar{Y}=\frac{4 t^{2}(3.5 t)+6 t^{2}(1.5 t)}{4 t^{2}+6 t^{2}}=\frac{23 t}{10}
$$

Determine the moment of inertia for the cross-sectional area about the x and y centroidal axes.

$$
100 \mathrm{~mm}-
$$

Two channels are welded to a rolled W section as shown. Determine the moments of inertia of the combined section with respect to the centroidal x and y axes.

	Designation	$\begin{aligned} & \text { Area } \\ & \mathrm{in}^{2} \end{aligned}$	Depth in.	Width in.	Axds X-X			Axts Y-Y		
					$\overline{I_{3}}, \mathrm{in}^{4}$	\bar{k}_{x}, in .	\bar{y}, in.	$\bar{I}_{y}, \mathrm{fn}^{4}$	\bar{k}_{y}, in.	\bar{x}, in.
W Shapes (Wide-Flange Shapes)	$\begin{aligned} & \text { W } 18 \times 76 \dagger \\ & \text { W16 } \times 57 \\ & \text { W14 } \times 38 \\ & \text { W } 8 \times 31 \end{aligned}$	$\begin{gathered} 22.3 \\ 16.8 \\ 11.2 \\ 9.12 \end{gathered}$	182 16.4 14.1 800	$\begin{gathered} 11.0 \\ 7.12 \\ 6.77 \\ 8.00 \end{gathered}$	$\begin{array}{r} 1330 \\ 758 \\ 385 \\ 110 \end{array}$	$\begin{aligned} & 7.73 \\ & 6.72 \\ & 5.87 \\ & 3.47 \end{aligned}$		$\begin{aligned} & 152 \\ & 43.1 \\ & 26.7 \\ & 37.1 \end{aligned}$	$\begin{aligned} & 2.61 \\ & 1.60 \\ & 1.55 \\ & 2.02 \end{aligned}$	
S Shapes (American Standard Shapes)	$\begin{aligned} & \mathrm{S} 18 \times 54.7 \dagger \\ & \mathrm{~S} 12 \times 31.8 \\ & \mathrm{~S} 10 \times 25.4 \\ & \mathrm{~S} 6 \times 12.5 \end{aligned}$	$\begin{gathered} 16.0 \\ 9.31 \\ 7.45 \\ 3.66 \end{gathered}$	$\begin{gathered} 180 \\ 12.0 \\ 10.0 \\ 6.00 \end{gathered}$	$\begin{aligned} & 6.00 \\ & 5.00 \\ & 4.66 \\ & 3.33 \end{aligned}$	$\begin{aligned} & 801 \\ & 217 \\ & 123 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 7.07 \\ & 4.83 \\ & 4.07 \\ & 2.45 \end{aligned}$		$\begin{gathered} 20.7 \\ 2.33 \\ 6.73 \\ 1.90 \end{gathered}$	$\begin{aligned} & 1.14 \\ & 1.00 \\ & 0.980 \\ & 0.702 \end{aligned}$	
C Shapes (American Standard Channels)	$\begin{aligned} & \mathrm{C} 12 \times 20.7 \dagger \\ & \mathrm{C} 10 \times 15.3 \\ & \mathrm{C} 8 \times 11.5 \\ & \mathrm{C} 6 \times 8.2 \end{aligned}$	$\begin{aligned} & 6.08 \\ & 4.48 \\ & 3.37 \\ & 2.39 \end{aligned}$	$\begin{gathered} 12.0 \\ 10.0 \\ 8.00 \\ 6.00 \end{gathered}$	$\begin{aligned} & 2.94 \\ & 2.60 \\ & 2.26 \\ & 1.92 \end{aligned}$	$\begin{gathered} 129 \\ 67.3 \\ 32.5 \\ 13.1 \end{gathered}$	$\begin{aligned} & 4.61 \\ & 3.87 \\ & 3.11 \\ & 2.34 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 2.27 \\ & 1.31 \\ & 0.687 \end{aligned}$	$\begin{aligned} & 0.797 \\ & 0.711 \\ & 0.623 \\ & 0.536 \end{aligned}$	$\begin{aligned} & 0.698 \\ & 0.634 \\ & 0.572 \\ & 0.512 \end{aligned}$
	$\begin{aligned} & \mathrm{L} 6 \times 6 \times \mathrm{l} \ddagger \\ & \mathrm{~L} 4 \times 4 \times \frac{1}{2} \\ & \mathrm{~L} 3 \times 3 \times \frac{1}{4} \\ & \mathrm{~L} 6 \times 4 \times \frac{1}{2} \\ & \mathrm{~L} 5 \times 3 \times \frac{1}{2} \\ & \mathrm{~L} 3 \times 2 \times \frac{1}{4} \end{aligned}$	$\begin{gathered} 11.0 \\ 3.75 \\ 1.44 \\ 4.75 \\ 3.75 \\ 1.19 \end{gathered}$			36.4 5.52 1.23 17.3 2.43 1.09	$\begin{aligned} & 1.79 \\ & 1.21 \\ & 0.926 \\ & 1.91 \\ & 1.58 \\ & 0.863 \end{aligned}$	$\begin{aligned} & 1.86 \\ & 1.18 \\ & 0.836 \\ & 1.98 \\ & 1.74 \\ & 0.980 \end{aligned}$	$\begin{aligned} & 36.4 \\ & 5.52 \\ & 1.23 \\ & 6.22 \\ & 2.55 \\ & 0.390 \end{aligned}$	$\begin{aligned} & 1.79 \\ & 1.21 \\ & 0.926 \\ & 1.14 \\ & 0.824 \\ & 0.569 \end{aligned}$	$\begin{aligned} & 1.86 \\ & 1.18 \\ & 0.836 \\ & 0.981 \\ & 0.746 \\ & 0.487 \end{aligned}$

Chapter 5 Part II - 3-D Rigid Body

Equilibrium of a rigid body

Now we add the z-axis to the coordinate system!

6 Equations of Equilibriums:

TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems

TABLE 5-2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems

(7)

single thrust bearing
(8)

single smooth pin

TABLE 5-2 Continued
Types of Connection Reaction Number of Unknowns

