Announcements - CBTF Quiz 6 this week - No class on Friday © (But Friday discussions still meet) - Written Assignment #4 Due Friday, Dec. 1 #### ☐ Upcoming deadlines: - Wednesday (11/15) - PL HW22 - Thursday (11/16) - ME HW23 ## Moment of Inertia for Areas Consider three different possible cross sectional shapes and areas for the beam RS. For the given vertical loading P on the beam, which shape will develop less internal stress and deflection? ## Moment of inertia of composite • If individual bodies making up a **composite** body have individual areas *A* and moments of inertia *I* computed through their centroids, then the **composite area** and **moment of inertia** is a sum of the individual component contributions. | Rectangle | | $\overline{I}_{x} = \frac{1}{12}bh^{3}$ $\overline{I}_{y} = \frac{1}{12}b^{3}h$ $I_{x} = \frac{1}{3}bh^{3}$ $I_{y} = \frac{1}{3}b^{3}h$ $J_{C} = \frac{1}{12}bh(b^{2} + h^{2})$ | |----------------|--|---| | Triangle | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\overline{I}_{x'} = \frac{1}{36}bh^{3}$ $I_{x} = \frac{1}{12}bh^{3}$ | | Circle | y x | $\overline{I}_x = \overline{I}_y = \frac{1}{4}\pi r^{-4}$ $J_O = \frac{1}{2}\pi r^{-4}$ | | Semicircle | y C C x | $I_x = I_y = \frac{1}{8}\pi r^{-4}$ $J_O = \frac{1}{4}\pi r^{-4}$ | | Quarter circle | y
•C
O ← r → x | $I_x = I_y = \frac{1}{16}\pi r^4$ $J_O = \frac{1}{8}\pi r^4$ | | Ellipse | y | $\begin{split} \overline{I}_x &= \frac{1}{4}\pi ab^3 \\ \overline{I}_y &= \frac{1}{4}\pi a^3 b \\ J_O &= \frac{1}{4}\pi ab(a^2 + b^2) \end{split}$ | Find the moment of inertia about its centroid: $$\bar{Y} = \frac{4t^2(3.5t) + 6t^2(1.5t)}{4t^2 + 6t^2} = \frac{23t}{10}$$ Determine the moment of inertia for the cross-sectional area about the *x* and *y* centroidal axes. 100 mm Two channels are welded to a rolled W section as shown. Determine the moments of inertia of the combined section with respect to the centroidal x and y axes. | | Area
Designation in ² | Depth Width
in. in. | Axis X-X | | | Axis Y-Y | | | | | |---|--|--|--------------------------------------|------------------------------|--|--|--|---|---|--| | | | | \overline{I}_{x} , in ⁴ | \overline{k}_{x} , in. | \overline{y} , in. | \overline{I}_{y} , in ⁴ | $\overline{k}_{y},$ in. | \overline{x} , in. | | | | W Shapes
(Wide-Flange
Shapes) | W18 × 76†
W16 × 57
W14 × 38
W8 × 31 | 22.3
16.8
11.2
9.12 | 18.2
16.4
14.1
8.00 | 11.0
7.12
6.77
8.00 | 1330
758
385
110 | 7.73
6.72
5.87
3.47 | | 152
43.1
26.7
37.1 | 2.61
1.60
1.55
2.02 | | | S Shapes (American Standard Shapes) | S18 × 54.7†
S12 × 31.8
S10 × 25.4
S6 × 12.5 | 16.0
9.31
7.45
3.66 | 18.0
12.0
10.0
6.00 | 6.00
5.00
4.66
3.33 | 801
217
123
22.0 | 7.07
4.83
4.07
2.45 | | 20.7
9.33
6.73
1.80 | 1.14
1.00
0.960
0.702 | | | C Shapes (American Standard Channels) | C12 × 20.7†
C10 × 15.3
C8 × 11.5
C6 × 8.2 | 6.08
4.48
3.37
2.39 | 12.0
10.0
8.00
6.00 | 2.94
2.60
2.26
1.92 | 129
67.3
32.5
13.1 | 4.61
3.87
3.11
2.34 | | 3.86
2.27
1.31
0.687 | 0.797
0.711
0.623
0.536 | 0.698
0.634
0.572
0.512 | | Angles $X \longrightarrow \overline{y}$ | L6×6×1‡ L4×4×½ L3×3×¼ L6×4×½ L5×3×½ L5×3×½ L3×2×¼ | 11.0
3.78
1.44
4.78
3.78
1.19 | | | 35.4
5.52
1.23
17.3
9.43
1.09 | 1.79
1.21
0.926
1.91
1.58
0.963 | 1.86
1.18
0.836
1.98
1.74
0.980 | 35.4
5.52
1.23
6.22
2.58
0.390 | 1.79
1.21
0.926
1.14
0.824
0.569 | 1.86
1.18
0.836
0.981
0.746
0.487 | | | | | | | Axis X-X | | | Axis Y-Y | | | | |--|--|--|--------------------------|------------------------------|--|--|--|--|--|--|--| | | Designation | Area
mm² | Depth
mm | Width
mm | 105 mm ⁴ | \overline{k}_x mm | \overline{y} mm | \overline{I}_y 106 mm4 | \overline{k}_y | \overline{x} mm | | | W Shapes (Wide-Flange Shapes) | W460 × 113†
W410 × 85
W360 × 57.8
W200 × 46.1 | 14400
10800
7230
5880 | 462
417
358
203 | 279
181
172
203 | 554
316
160
45.8 | 196
171
149
88.1 | | 63.3
17.9
11.1
15.4 | 66.3
40.6
39.4
51.3 | | | | S Shapes (American Standard Shapes) | S460 × 81.4†
S310 × 47.3
S250 × 37.8
S150 × 18.6 | 10300
6010
4810
2360 | 457
305
254
152 | 152
127
118
84.6 | 333
90.3
51.2
9.16 | 180
123
103
62.2 | | 8.62
3.88
2.80
0.749 | 29.0
25.4
24.1
17.8 | | | | C Shapes (American Standard Channels) | C310 × 30.8†
C250 × 22.8
C200 × 17.1
C150 × 12.2 | 3920
2890
2170
1540 | 305
254
203
152 | 74.7
66.0
57.4
48.8 | 53.7
28.0
13.5
5.45 | 117
98.3
79.0
59.4 | | 1.61
0.945
0.545
0.286 | 20.2
18.1
15.8
13.6 | 17.7
16.1
14.5
13.0 | | | Angles $X \longrightarrow \overline{y} \longrightarrow \overline{y} \longrightarrow X$ | L152 × 152 × 25.4‡
L102 × 102 × 12.7
L76 × 76 × 6.4
L152 × 102 × 12.7
L127 × 76 × 12.7
L76 × 51 × 6.4 | 7100
2420
929
3060
2420
768 | | | 14.7
2.30
0.512
7.20
3.93
0.454 | 45.5
30.7
23.5
48.5
40.1
24.2 | 47.2
30.0
21.2
50.3
44.2
24.9 | 14.7
2.30
0.512
2.59
1.06
0.162 | 45.5
30.7
23.5
29.0
20.9
14.5 | 47.2
30.0
21.2
24.9
18.9
12.4 | | # Chapter 5 Part II – 3-D Rigid Body ## Equilibrium of a rigid body Now we add the z-axis to the coordinate system! 6 Equations of Equilibriums: #### TABLE 5–2 Supports for Rigid Bodies Subjected to Three-Dimensional Force Systems Types of Connection Reaction Number of Unknowns single journal bearing # TABLE 5-2 Continued Types of Connection Number of Unknowns Reaction (6) single journal bearing with square shaft (7) single thrust bearing (8) single smooth pin