Announcements

- CBTF Quiz 5 this week
- MATLAB Lecture:Thursday, 5-6PM, location MEB 218.
- 211 students DO NOT take 210 final, or you will get a zero on 211 final!!!
\square Upcoming deadlines:
- Wednesday (11/1)
- PL HW18 - Tonight
- Thursday (11/2)
- ME HW19
- Friday ($11 / 3$)
- WA\#3

dyingofcute.tumblr.com

Blocks A and B have the same height and a mass of 7 kg and 10 kg , respectively. Determine the largest vertical force P which can be applied to the cord attached to the middle of B without causing motion.

2.) R will tip over.

- Set $x=150 \mathrm{~mm}$ for tipping.

EoE

$$
\begin{aligned}
& \text { (1) } \sum F_{x}=F_{\text {fac }}-T=0 \Rightarrow F_{\text {tic }}=T \\
& \text { (2) } \sum F_{y}=N-w_{b}=0
\end{aligned}
$$

(3) $\Sigma M_{0}=T(480 \mathrm{~mm})-N(158 \mathrm{~mm})=0$
$\Rightarrow T=N\left(\frac{150}{400}\right) \stackrel{O,(2)}{\Longrightarrow} F_{\text {tic }}=W_{B}\left(\frac{150}{400}\right)=36.19 \mathrm{~N}$ for tipping case
\sim Since the friction force on block B is smaller for the tipping case, it will occur first. Now solve for P...

FBD for block A
$\downarrow^{N_{B}} F_{\text {tron } B} \sim$ use the $F_{\text {tron }}$ value darned previously, and pending motion will require $F_{\text {fica } A}$ to be at the maximum static value,

$$
\begin{aligned}
& \sum F_{y}=N_{A}-W_{A}-N_{B}=0 \quad \text { so } \quad F_{\text {fin CA }}=\mu_{A} N_{A} \\
& \sum F_{x}=P-F_{\text {fri } B B}-F_{\text {pic } A}=0 \\
& P=F_{\text {fir }}+F_{\text {ficA }}=36.79 \mathrm{~N}+(0.3)(166.77 \mathrm{~N})=82.8 \mathrm{~N}
\end{aligned}
$$

The table weighs 50 lb and the coefficient of static friction between its legs and the inclined surface is 0.7. A force \mathbf{P} parallel to the incline in applied to the table, what is the minimum magnitude to make the table move?
1.) Tipping (ase: the most effective way is to push down at B.

FBI B. When table tips, $N_{D}=0$.

2.) Slipping Case: the most effective way is fo push down the $F B D \quad$ ranis at B as well.

- Impending motion: $F_{\text {fris, }, 6}=\mu_{1} N_{c}$

$$
\begin{aligned}
& F_{\text {eric, } D}=\mu_{s} N_{D} \text {. } \\
& \sum F_{x}=F_{\text {fri, },}+F_{\text {fri, } D}-W \sin 20^{\circ}-B=0 \\
& \sum F_{y}=N_{c}+N_{0}-\omega \omega s 20^{\circ}=0 \\
& \sum M_{c}=W \sin 20^{\circ}\left(28_{i n}\right)-W \cos 20^{\circ}(23 \mathrm{in})+N_{0}(46 \mathrm{im}) \\
& +B(32 \text { in })=0 \\
& \Rightarrow B=15.791 \mathrm{~b} \quad \Rightarrow B_{\text {slip }}<B_{\text {spp }} \Rightarrow B=15.79 \mathrm{lb}
\end{aligned}
$$

The wheel weighs $150-\mathrm{lb}$, the uniform concrete block has a weight of 300 lb . The coefficients of static friction are 0.2 at $A, 0.3$ at B, and 0.4 between the concrete block and the floor. Determine the smallest couple moment required to cause motion.
Cases to wrsider:
1.) Wheel rotate in place
2.) Wheel rotate to the left, block slides
3.) Wheel rotates to the left,
 block tips

- Analyze the wheel

EOE

$$
\Sigma F_{x}=N_{B}-F_{\text {tic, } A}=0
$$

- Impending motion: $\sum F_{y}=F_{\operatorname{tin}, A}+N_{A}-W=0$

$$
\begin{array}{r}
\underset{F_{\text {tic }}=\mu_{S} N}{\Longrightarrow} \sum M_{A}=28.36 \mathrm{lb}, N_{A}=141.5 \mathrm{lb}, M=55.216 \cdot 1 \mathrm{tt} .
\end{array}
$$

- Analyze the block

$$
\begin{aligned}
& \text { EOE } d^{\text {known from }} \\
& \Sigma F_{x}=F_{p_{i n}, c}-N_{0}^{0}=0 \\
& \sum F_{y}=F_{f i n, 0}-W+N_{c}=0 \\
& \sum M_{0}=-F_{\text {for }, B}\left(\frac{1}{2} f t\right)+N_{B}(1.5-1)-N_{c} x=0 \\
& \Rightarrow F_{\text {finc,c }}=28.30 \mathrm{lb}, N_{c}=308.51 \mathrm{lb}, x=0.1239 \mathrm{Ht} \text {. }
\end{aligned}
$$

\rightarrow Since $F_{\text {inc,c }}<F_{s}$ and $x<\frac{1}{2} A$, block will remain at equilibrium when the wheel goes into motion with $M=55.21 \mathrm{lb}-1 \mathrm{~A}$

