Announcements

- TAM210 last lecture: Friday, Nov. 3rd
- TAM210 Final: 2 hour exam
 - Location: CBTF
 - Thursday, Nov. 9th through Sunday, Nov. 12th

☐ Upcoming deadlines:

- Tuesday (10/24)
 - PL HW16
- Thursday (10/26)
 - ME HW17

guineapighub.com

Recap: Internal Forces and Moment

· 3 components

Bending moment (M) (+ smiley")

A Normal force (N)

(+ points away

from the cut)

(+ clockwise rotation)

Determine the normal force, shear force, and bending moment at *C* of the beam.

1.) FBD of the whole system & find all external bondings

- 2.) Make a cut at the pt.
 I interest.
- 3.) Pick the side of lengt #1

 of loadings.

 Pick right side

SFx= N=0

SFy= V-FR=0 V=FR

EM=-Mc-FR(3)(15m)=0

4.) Use FBD & EDE of the chose piece to solve for V. N. M.

Lett piece FR.

MAX

JAX

SFY = Ay V-FR=0

Shear and Moment Diagram

Beams: structural members designed to support loadings applied perpendicular to their axes.

Simply supported beam

Cantilever beam

<u>Goal</u>: provide detailed knowledge of the <u>variations</u> of internal loadings (V and M) throughout the beam

Procedure

- (1. Find support reactions (free-body diagram of entire structure)
- 2. Specify coordinates *x*
- 3. Divide the beam into regions
- (4.) Draw FBD of a segment
- 5. Apply equations of equilibrium to derive V and M as functions of *x*

EMA =-Pa-VX+M=0=) M=Pa+VX