Announcements

- Quiz 3 pick-up during office hours (Grainger 429)
 - Wednesday 4-9 pm (10/18)
 - Thursday 4-9 pm (10/19)

☐ Upcoming deadlines:

- Wednesday (10/18) Today!
 - PL HW14
- Thursday (10/19)
 - ME HW15

imgur.com/bsFJm

Recap: Internal Loadings

Structural Design: need to know the loading acting within the member in order to be sure the material can resist this loading

Objective

• Determine the internal loadings in members using the method of sections

Internal Forces and Moment

Normal force (N):

Shear force (**V**):

Bending moment (**M**):

Sign conventions

Positive normal force

Positive shear force

Positive moment

Procedure for analysis

- 1. Find support reactions (free-body diagram of entire structure)
- 2. Pass an imaginary section through the member
- 3. Draw a free-body diagram of the segment that has the least number of loads on it
- 4. Apply the equations of equilibrium

Example: Find the internal forces and moments at B (just to the left of P) and at C (just to the right of P)

Determine the normal force, shear force, and bending moment at *B*.

Determine the normal force, shear force, and bending moment at D.

Determine the normal force, shear force, and bending moment at *C* of the beam.

Determine the normal force, shear force, and bending moment at *C*.

Shear and Moment Diagram

Beams: structural members designed to support loadings applied perpendicular to their axes.

Simply supported beam

Cantilever beam

Shear and Moment Diagram

<u>Goal</u>: provide detailed knowledge of the variations of internal loadings (V and M) throughout the beam

Procedure

- 1. Find support reactions (free-body diagram of entire structure)
- 2. Specify coordinates *x*
- 3. Divide the beam into regions
- 4. Draw FBD of a segment
- 5. Apply equations of equilibrium to derive V and M as functions of *x*

