Announcements

• Happy Mid-Autumn Festival!

- ☐ Upcoming deadlines:
- Thursday (10/5)
 - ME HW11
- CATME Mid-course Survey (10/6)
- Tuesday (10/10)
 - PL HW12

Recap

• Rigid body equilibrium

• Two force member

Chapter 6: Structural Analysis

Goals and Objectives

- Determine the forces in members of a truss using the method of joints
- Determine zero-force members
- Determine the forces in members of a truss using the method of sections

Simple trusses

Trusses are commonly used to support roofs.

A more challenging question is, that for a given load, how can we design the trusses' geometry to minimize cost?

Scaffolding

An understanding of statics is critical for predicting and analyzing possible modes of failure.

Buckling of slender members in compression is always a consideration in structural analysis.

Simple trusses

Truss:

- Structure composed of slender members joined together at end points
- Transmit loads to supports

Assumption of trusses

 Loading applied at joints, with negligible weight. Members joined by smooth pins

Result: <u>all</u> truss members are

and therefore the force acting at the end of each member will be directed along the axis of the member

Roof trusses

Load on roof transmitted to purlins, and from purlins to roof trusses at joints.

Bridge trusses

Load on deck transmitted to stringers, and from stringers to floor beams, and from floor beams to bridge trusses at joints.

Truss joints

 Bolting or welding of the ends of the members to a gusset plates or passing a large bolt through each of the members

 Properly aligned gusset plates equivalent to pins (i.e., no moments) from coplanar, concurrent forces

Simple trusses built from triangular members

Method of joints

- Truss is in equilibrium ONLY if ALL individual pieces are in equilibrium
- Truss members are two-force members: equilibrium satisfied by equal, opposite, collinear forces

Procedure for analysis:

Find the forces in each member of the truss. Determine if members are in tension or compression.

Zero-force members

- Particular members in a structure may experience no force for certain loads.
- Zero-force members are used to increase stability
- Identifying members with zero-force can expedite analysis.

Identify all zero-force members in the truss.

