

Announcements

- Written Assignment 1 due today
- Piazza etiquette
- ☐ Upcoming deadlines:
- Tuesday (9/26)
 - PL HW8
- Thursday (9/28)
 - ME HW9

NEVER HAVE I FELT SO CLOSE TO ANOTHER SOUL AND YET SO HELPLESSLY ALONE AS WHEN I GOOGLE AN ERROR AND THERE'S ONE RESULT A THREAD BY SOMEONE WITH THE SAME PROBLEM AND NO ANSWER LAST POSTED TO IN 2003

xkcd.com

1

Recap

• Equivalent force systems

Distributed Loading

A common case of distributed loading in a uniform load along one axis of a flat rectangular body.

In such cases, *w* is a function of *x* and has <u>units</u> of

$$W(x) = \frac{F}{x} = \frac{[N]}{[m]}$$

M(x)x

Consider an element of length dx. The force magnitude dF acting on it is given as

$$df = w(x) dx = dA$$

The net force on the beam is given by

$$F_R = \int_0^L w(x) dx = A.$$

Location of the Resultant Force

The force *dF* will produce a moment about *O* of

$$dM_s = x dF = x (w(x) dx)$$

The total moment about point O is

$$M_0 = \int_0^L x dF = \int_0^L x w(x) dx$$

Assuming that \mathbf{F}_R acts at \underline{x} , it will produce the moment about point O as

$$M_0 = \overline{x} F_{12} = \int_0^L x(w(x)) dx$$

Hence,

$$\frac{1}{x} = \frac{M_0}{F_R} = \frac{\int_0^L x \omega(x) dx}{\int_0^L \omega(x) dx}$$

$$F_{II} = bh = (6m)(2kN) = 12kN$$

$$d_{II} = \frac{1}{2}L = \frac{1}{2}(6m) = 3m$$

$$d_{II} = \frac{1}{2}L = \frac{1}{2}(6m) = 3m$$

$$Sep22Lec 11 Page 10$$

$$F_{R} = F_{I} + F_{I} = 15 \text{ kN}$$

$$M_{A} = F_{I} d_{I} + F_{I} d_{II}$$

$$= (3 \text{ kN})(5 \text{ m}) + (12 \text{ kN})(3 \text{ m})$$

$$= 51 \text{ kN} \cdot \text{m}$$

$$d = \frac{M_{A}}{F_{R}} = \frac{51 \text{ kN} \cdot \text{m}}{15 \text{ kN}}$$

$$= \frac{15 \text{ kN}}{15 \text{ kN}}$$

 $\frac{(2.5m)(6\frac{kN}{m})}{2} = F_1 \quad \text{II} \quad F_2 = \frac{(4.5m)(6\frac{kN}{m})}{2} = 13.5 \text{ kN}$ $= 22.5 \text{ kN} \quad \text{F}_3 = \frac{(4.5m)(6\frac{kN}{m})}{2} = 13.5 \text{ kN}$ $= 22.5 \text{ kN} \quad \text{F}_4 = \frac{(4.5m)(6\frac{kN}{m})}{2} = 13.5 \text{ kN}$ = (22.5 + 13.5 + 15) kN $M_A = Y_1 F_1 + Y_2 F_2 + Y_3 F_3 + M_1 \quad F_K = 51 \text{ kN}$ = (22.5 + 13.5 + 15) kN = (22.5 + 13.5 + 15) kN

$$M_{A} = Y, F_{1} + Y_{2} F_{2} + Y_{3} F_{3} + M,$$

$$= (5m)(27.5kN) + (9m)(13.5kN) + (12m)(15kN) + 500 kN \cdot m$$

$$= M_{A} = 914 kN \cdot m \quad (Cw)$$

$$d = \frac{M_{RA}}{F_{R}} = \frac{914 kN \cdot m}{51 kN} \implies d = 17.9 m$$