Announcements

- Quiz 2 starts tomorrow!
- ☐ Upcoming deadlines:
- Tuesday (9/19)
 - PL HW6
- Thursday (9/21)
 - ME HW7
- Friday (9/22)
 - Writing Assignment 1 (FBD only)

Recap

- Moment of a force
 - About a point

Recap

- Moment of a force
 - About a point
 - About an axis

The force F = 10 N is acting along DC. Determine the moment of F about the bar BA.

Moment of a couple

A **couple** is defined as two parallel forces that have the same magnitude, but opposite directions, and are separated by a perpendicular distance d.

Since the resultant force is zero, the only effect of a couple is to produce an actual rotation, or if no movement is possible, there is a tendency of rotation in a specified direction.

The moment produced by a couple is called **couple moment**.

Let's determine the sum of the moments of both couple forces about **any** arbitrary point:

A torque or moment of 12 N·m is required to rotate the wheel. Would F be greater or less than 30 N?

A twist of 4 N-m is applied to the handle of the screwdriver. Resolve this couple moment into a pair of couple forces ${\bf F}$ exerted on the handle and

Find the moment about the support at O? F = 125 N, P = 100 N.

Moving a force on its line of action

Moving a force from A to B, when both points are on the vector's line of action, does not change the **external effect**.

Hence, a force vector is called a **sliding vector**.

However, the **internal effect** of the force on the body does depend on where the force is applied.

Moving a force off of its line of action

Equipollent (or equivalent) force systems

A force **system** is a collection of **forces** and **couples** applied to a body.

Two force systems are said to be **equipollent** (or equivalent) if they have the **same resultant force** AND the **same M resultant moment** with respect to any point *P*.

What is the equivalent system?

