Announcements

- Morning Office Hours: Mon/Wed, 9-10am in MEB 220H
- Quiz 2 sign-ups are now open
- The scope of the exam will cover up to the end of today's lecture (Lecture 7)
- Same format as Quiz 1
\square Upcoming deadlines:
- Thursday (9/14)
- ME HW5
- Tuesday (9/19)
- PL HW6
- Due next week
- Writing Assignment 1

Recap

- Equilibrium of a particle in 2D and 3D
- Equilibrium of a system of particles
- Free body diagram
- Equation of equilibrium

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Applications

Carpenters often use a hammer in this way to pull a stubborn nail. Through what sort of action does the force F_{H} at the handle pull the nail? How can you mathematically model the effect of force F_{H} at point O ?

Moment 1. a very brief period of time. An Exact point in time. 2. importance. 3. A turning Effect produced by a force acting at a distance on An object.

Moment of a Force

Which force(s) have NO turning effect?

Moment of a Force

1) Which force(s) yields a "tighty" effect?
2) Which force(s) yields a "loosey" effect?

Moment of a force - scalar formulation

The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).

(a) Sense of rotation

Example - Scalar Formulation

Determine the moment of this force about the point A as a function of \mathbf{F}.

Moment of a force - vector formulation

The moment of a force \mathbf{F} about point \mathbf{O}, or actually about the moment axis passing through O and perpendicular to the plane containing \mathbf{O} and \mathbf{F}, can be expressed using the cross (vector) product, namely:

Example - Vector Formulation

Given: The angle $\boldsymbol{\theta}=30^{\circ}$ and $x=10 \mathrm{~m}$.
Find: The moment by \mathbf{P} about point O .

Example - Vector Formulation
 \section*{z}

Find: Moment of the force about point B.

Moment about a Specific Axis

Remember, the component of a vector, \mathbf{A}, along the direction of another, \mathbf{B}, can be determined using the dot product:

