Announcements

- Quiz 1 Next Week!!! (How's your MATLAB skills?)
- Practice quiz available on PL
-Upcoming deadlines:
- Friday (9/8 - TODAY!)
- Quiz 1 Sign-up
- Tuesday (9/12)
- PL HW4
- Thursday (9/14)
- ME HW5

(1) L5 - Force along a line Cross product

Recap

- Position vectors
- Dot (scalar) product
- Cross (vector) product
(2) L5 - Force along a line Cross product

Chapter 3: Equilibrium of a particle

Goals and Objectives

- Practice following general procedure for analysis.
- Introduce the concept of a free-body diagram for an object modeled as a particle.
- Solve particle equilibrium problems using the equations of equilibrium.
(4) L5 - Force along a line Cross product

Applications

For a spool of given weight, how would you find the forces in cables $A B$ and $A C$?

If designing a spreader bar (BC) like this one, you need to know the forces to make sure the rigging (A) doesn't fail.

General procedure for analysis

1. Read the problem carefully; write it down carefully.
2. MODEL THE PROBLEM: Draw given diagrams neatly and construct additional figures as necessary.
3. Apply principles needed.
4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
5. Substitute numbers. Provide proper units throughout. Check significant figures. Box the final answer(s).
6. See if answer is reasonable.

Free body diagram

Idealizations

Pulleys are (usually) regarded as frictionless; then the tension in a rope or cord around the pulley is the same on either side.

Frictionless pulley
(8) L5 - Force along a line Cross product

Idealizations

Springs are (usually) regarded as linearly elastic; then the tension is proportional to the change in length s.

Linearly elastic spring
(9) L5 - Force along a line Cross product

Idealizations

Contact force in smooth surface:

Equilibrium of a particle

According to Newton's first law of motion , a particle will be in equilibrium (that is, it will remain at rest or continue to move with constant velocity) if and only if

In three dimensions, equilibrium requires:

Coplanar forces: if all forces are acting in a single plane, such as the "xy" plane, then the equilibrium condition becomes

Example

If the spring $D B$ has an unstretched length of 2 m , determine the stiffness of the spring to hold the $40-2 \mathrm{~m}$ kg crate in the position shown.

(12) L5 - Force along a line Cross product

Example

Determine the distances x and y for equilibrium if $F_{1}=800 \mathrm{~N}$ and $F_{2}=1000 \mathrm{~N}$.

13 L5 - Force along a line Cross product

