#### **Announcements**

- Quiz 1 Next Week!!! (How's your MATLAB skills?)
  - Practice quiz available on PL
- ☐ Upcoming deadlines:
- Friday (9/8 TODAY!)
  - Quiz 1 Sign-up
- Tuesday (9/12)
  - PL HW4
- Thursday (9/14)
  - ME HW5



#### Recap

Position vectors

Dot (scalar) product

Cross (vector) product

# Chapter 3: Equilibrium of a particle

### Goals and Objectives

- Practice following general procedure for analysis.
- Introduce the concept of a <u>free-body diagram</u> for an object modeled as a particle.
- Solve particle equilibrium problems using the <u>equations</u> of equilibrium.

### **Applications**

For a spool of given weight, how would you find the forces in cables AB and AC?

If designing a spreader bar (BC) like this one, you need to know the forces to make sure the rigging (A) doesn't fail.



### General procedure for analysis

- 1. Read the problem carefully; write it down carefully.
- 2. MODEL THE PROBLEM: Draw given diagrams neatly and construct additional figures as necessary.
- 3. Apply principles needed.
- 4. Solve problem symbolically. Make sure equations are dimensionally homogeneous
- 5. Substitute numbers. Provide proper units *throughout*. Check significant figures. Box the final answer(s).
- 6. See if answer is reasonable.

## Free body diagram



The lift sling is used to hoist a container having a mass of 500 kg. Determine the force in each of the cables AB and AC as a function of  $\theta$ .

#### Idealizations

Pulleys are (usually) regarded as frictionless; then the tension in a rope or cord around the pulley is the same on either side.



Frictionless pulley

#### Idealizations

Springs are (usually) regarded as linearly elastic; then the tension is proportional to the *change* in length *s*.



Linearly elastic spring

### Idealizations



**Contact force in smooth surface:** 

## Equilibrium of a particle

According to Newton's first law of motion, a particle will be in **equilibrium** (that is, it will remain at rest or continue to move with constant velocity) if and only if

In three dimensions, equilibrium requires:

**Coplanar forces**: if all forces are acting in a single plane, such as the "xy" plane, then the equilibrium condition becomes

### Example

If the spring *DB* has an unstretched length of 2 m, determine the stiffness of the spring to hold the 40- 2 m kg crate in the position shown.



## Example



Determine the distances x and y for equilibrium if  $F_1 = 800$  N and  $F_2 = 1000$  N.