Announcements

\square Sign-up for Quiz 1
\square Practice quiz available on PL
\square Be familiar with MATLAB commands
\square Upcoming deadlines:

- Tuesday (9/5)
- Prairie Learn HW2
- Thursday (9/7)
- Mastering Engineering HW3

Recap

- A force can be treated as a vector, since forces obey all the rules that vectors do.
- Vector representations
- Rectangular components
- Cartesian vectors
- Unit vector
- Direction cosines
- Position vectors

Force vector directed along a line

Dot (or scalar) product

 The dot product of vectors \mathbf{A} and \mathbf{B} is defined as suchCartesian vector formulation:
$\boldsymbol{A} \cdot \boldsymbol{B}=$

Projections

The scalar component $A_{\|}$of a vector \boldsymbol{A} along (parallel to) a line with unit vector \boldsymbol{u} is given by:

$$
A_{\|}=
$$

\boldsymbol{u}

$$
\begin{aligned}
& \boldsymbol{A}_{\|}= \\
& \boldsymbol{A}_{\perp}=
\end{aligned}
$$

Example

a) Determine the angle between $A B$ and the flag pole.

Example

a) Determine the angle between $A B$ and the flag pole.
b) Determine the projected component of the force vector \boldsymbol{F}_{C} along

Example

a) Determine the angle between $A B$ and the flag pole.
b) Determine the projected component of the force vector \boldsymbol{F}_{C} along the axis $A O$ of the flag pole.

Cross (or vector) product

The cross product of vectors \mathbf{A} and \mathbf{B} yields the vector \mathbf{C}, which is written

$$
C=A \times B
$$

The magnitude of vector \mathbf{C} is given by:

The vector \mathbf{C} is perpendicular to the plane containing \mathbf{A} and \mathbf{B} (specified by the right-hand rule). Hence,

Cross (or vector) product

The right-hand rule is a useful tool for determining the direction of the vector resulting from a cross product. Note that a vector crossed into itself is zero, e.g., $i \times i=0$

Considering the cross product in Cartesian coordinates

$$
\boldsymbol{A} \times \boldsymbol{B}=\left(A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k}\right) \times\left(B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}\right)
$$

Cross (or vector) product

Also, the cross product can be written as a determinant.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Each component can be determined using 2×2 determinants.

Chap 2 - recap

- Scalars -
- Vectors -
- Dot product -
- Cross product -

Rectangular components of a vector

Cartesian vector representation

Cartesian vector using direction cosines

