Announcements

\square MATLAB Clinics - Today (Fri) 9am - 5pm
\square Upcoming deadlines:

- Friday (9/1)
- Prairie Learn HW0
- Sunday (9/3)
- Mastering Engineering HW1
- Tuesday (9/5)
- Prairie Learn HW2
- Thursday (9/7)
- Mastering Engineering HW3

Recap

- Pay attention to units!
- Solve problem symbolically
- Equations must be dimensionally homogenous
- 1\% accuracy
- Scalar - defined by magnitude (negative/positive)
- Vector - defined by magnitude and direction
- Vector operations - addition/subtraction

Force vectors

A force - the action of one body on another - can be treated as a vector, since forces obey all the rules that vectors do.

Cartesian vectors

Rectangular coordinate system: formed by 3 mutually perpendicular axes, the x, y, z axes, with unit vectors $\hat{i}, \hat{j}, \hat{k}$ in these directions.
Note that we use the special notation " \wedge " to identify basis vectors (instead of the " \sim " or " \rightarrow " notation) $(\hat{i}, \hat{j}, \hat{k})$ or $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$

Rectangular components of a vector
$\boldsymbol{A}=$

Cartesian vector representation
$\boldsymbol{A}=$

Magnitude of Cartesian vectors

$$
A=|\boldsymbol{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

Direction of Cartesian vectors

Expressing the direction using a unit vector:

Direction cosines are the components of the unit vector:

$$
\boldsymbol{u}_{A}=\frac{A}{A}
$$

Addition of Cartesian vectors

$$
\boldsymbol{R}=\boldsymbol{A}+\boldsymbol{B}=
$$

Example

Express each force vector using the Cartesian vector form (components form).

Example

The bracket is subjected to the two forces on the ropes.
(a) Express each force vector using the Cartesian vector form (components form).

Example

The bracket is subjected to the two forces on the ropes.
(a) Express each force vector using the Cartesian vector form (components form).
(b) Determine the magnitude of the resultant force vector

Example

The bracket is subjected to the two forces on the ropes.
(a) Express each force vector using the Cartesian vector form (components form).
(b) Determine the magnitude of the resultant force vector
(c) Determine the direction cosines of the resultant force vector

Position vectors

Hence,
A position vector \boldsymbol{r} is defined as a fixed vector which locates a point in space relative to another point. For example,

$$
\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}
$$

expresses the position of point $P(x, y, z)$ with respect to the origin O.

The position vector \boldsymbol{r} of point \boldsymbol{B} with respect to point \boldsymbol{A} is obtained from

Thus, the $(\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k})$ components of the positon vector \boldsymbol{r} may be formed by taking the coordinates of the tail (point A) and subtracting them from the corresponding coordinates of the head (point B).

L3 - Force Vectors

Example

Determine the lengths of bars AB, BC and AC .

Force vector directed along a line

Dot (or scalar) product

The dot product of vectors \mathbf{A} and \mathbf{B} is defined as such

Cartesian vector formulation:
$\boldsymbol{A} \cdot \boldsymbol{B}=$
Note that:

Projections

The scalar component $A_{\|}$of a vector \boldsymbol{A} along (parallel to) a line with unit vector \boldsymbol{u} is given by:

$$
A_{\|}=
$$

And thus the vector components $\boldsymbol{A}_{\|}$and \boldsymbol{A}_{\perp} are given by:
$\boldsymbol{A}_{\|}=$
$A_{\perp}=$

Example
 a) Determine the angle between $A B$ and the axis $A O$ of the flag pole.

Example

Cross (or vector) product

The cross product of vectors \mathbf{A} and \mathbf{B} yields the vector \mathbf{C}, which is written

$$
C=A \times B
$$

The magnitude of vector \mathbf{C} is given by:

The vector \mathbf{C} is perpendicular to the plane containing \mathbf{A} and \mathbf{B} (specified by the right-hand rule). Hence,

Cross (or vector) product

The right-hand rule is a useful tool for determining the direction of the vector resulting from a cross product. Note that a vector crossed into itself is zero, e.g., $i \times i=0$

Considering the cross product in Cartesian coordinates

$$
\boldsymbol{A} \times \boldsymbol{B}=\left(A_{x} \boldsymbol{i}+A_{y} \boldsymbol{j}+A_{z} \boldsymbol{k}\right) \times\left(B_{x} \boldsymbol{i}+B_{y} \boldsymbol{j}+B_{z} \boldsymbol{k}\right)
$$

Cross (or vector) product

Also, the cross product can be written as a determinant.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|
$$

Each component can be determined using 2×2 determinants.

Examples

Given the vectors

$$
\begin{aligned}
& \boldsymbol{A}=2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k} \\
& \boldsymbol{B}=15 \boldsymbol{i}-20 \boldsymbol{j}+18 \boldsymbol{k} \\
& \boldsymbol{C}=\boldsymbol{i}+7 \boldsymbol{k}
\end{aligned}
$$

Determine:

1. $\boldsymbol{A}+\boldsymbol{B}$
2. $B-C$
3. $\boldsymbol{A} \cdot \boldsymbol{B}$
4. $\boldsymbol{B} \times \boldsymbol{C}$
5. a unit vector in the direction of \boldsymbol{C}
6. the direction cosines of \boldsymbol{B}
