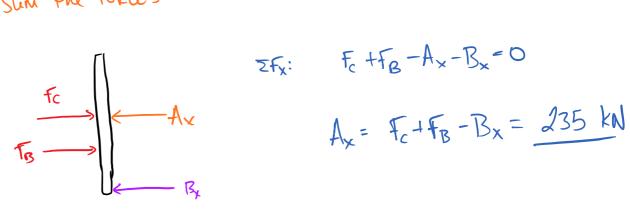

To do ...

- Quiz 7 next week
- Last day of office hours and piazza help: Wed, Dec 13
- No discussion sections next week
- HW 24 PL due **Tues**
- HW 27 ME due Sat

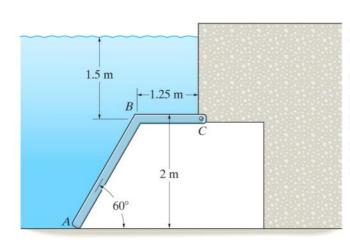
The 2-m-wide rectangular gate is pinned at its center A and is prevented from rotating by the block at B. Determine the reactions at these supports due to hydrostatic pressure.

$$f_c = w_c h = Pebh = ggbh = ggbh = f_c$$

$$f_b = \frac{1}{2}(u_b - u_c)h = \frac{1}{2}ggbh(-f_b - f_c)$$

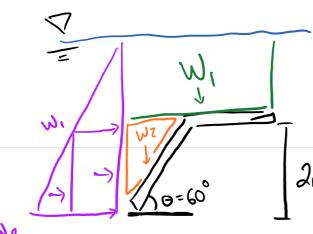

$$f_{R} = f_{c} + f_{B} = g bh \left(\frac{z_{B} + z_{C}}{2}\right)$$

Sum the moment About A.


$$ZM_A$$
: $F_B(0.5) - B_X(1.5) = 0$
 $\frac{2}{5}B_X = \frac{1}{5}F_B = 0$
 $\frac{2}{5}B_X = \frac{1}{5}F_B$

29.4 KN

Sum the forces in x



$$A_{x} = F_{c} + F_{B} - B_{x} = 235 \text{ kg}$$

Determine the magnitude of the resultant force acting on the gate ABC due to hydrostatic pressure. The gate has a width of 1.5 m and the density of the water is 1000 kg/m³.

DRAW the FBD:

the resultant force is

| Fe | = V Fx + Fy

$$\bar{\chi} = f_1 + \bar{f}_2 = (2_M)\omega_1 + \frac{1}{2}(2_M)(\omega_2 - \omega_1)$$

$$F_{x} = (2m) U_1 + W_2 - U_1 = W_2 - U_1 = (1.5m) (P_2 - P_1)$$

$$f_{x} = (1.5 \text{ m}) (99) (2z-2i) = (1.5 \text{ m}) (99) (2n) = 74 \text{ kN}$$

$$f_{y} = W_{1} + W_{2} = W_{1}9 + W_{2}9 = 99 (\Omega_{1} + \Omega_{2})$$

$$f_{y} = (1.5 \text{ m}) (99) \left[(1.5) (1.25 + \frac{2}{44060}) + (\frac{1}{2}) (2) (\frac{2}{44060}) \right]$$

$$f_{y} = 70 \text{ kN}$$

$$f_{z} = \sqrt{f_{x}^{2} + f_{y}^{2}} = 102 \text{ kN}$$

A cube of material with edge lengths d and specific weight 2γ is suspended by a cable and is submerged to a depth d in a fluid having specific weight γ . Determine the force T in d the cable. DRAW the FBD of the cube. Fo J San the forces: 2 Fx = 0 F+15-15-F4=0

$$T + F_5 - W - F_6 = 0$$

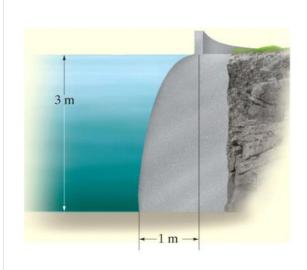
$$T = W + F_6 - F_5$$

$$T = Mg + dW_6 - dW_5$$

$$T = S_2 \Omega_g + dP_6 d - dP_5 d$$

$$T = S_2 g d^3 + (S_1 g d) d^2 - (P_1 g 2 d) d^2$$

$$T = S_2 g d^3 + P_1 g d^3 - 2P_1 g d^3$$

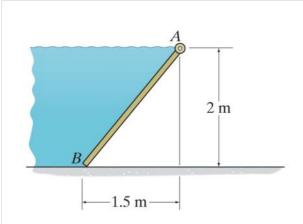

$$T = S_2 g d^3 + S_1 g d^3 - 2P_2 g d^3$$

$$T = 28 d^3 - 8 d^3 - 28 d^3 - 28 d^3$$

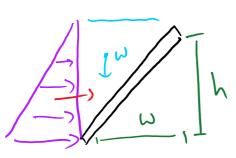
$$T = 28 d^3 - 8 d^3 - 28 d^3$$

$$T = 8 d^3 - 8 d^3 - 28 d^3$$

$$T = 8 d^3 - 8 d^3 - 28 d^3$$



Determine the magnitude and location of the resultant hydrostatic force acting on the surface of a seawall shaped in the form of a parabola. The wall is 5 m. The density of the sea water is $1020 \, \text{kg/m}^3$

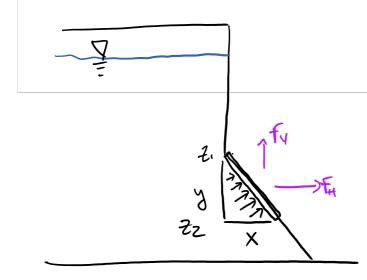

Weight 1

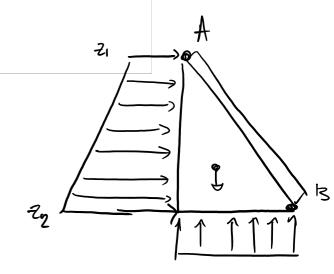
veight= 99V= 39A.b

the resultant force is

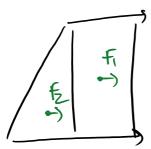
Determine the magnitude of the hydrostatic force acting on gate AB which has a width of 1.5 m.

$$F_{H} = \frac{1}{2} \omega_{gh} = \frac{1}{2} sghbh = \frac{ggbh^{2}}{2}$$


$$F_{V} = ggV = ggAb = ggb = \frac{1}{2} hw$$


$$F_{V} = \frac{1}{2} ggbhw$$

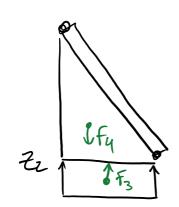
a-length of GATE!


6 ft 4 ft

Determine the magnitude of the hydrostatic force acting on gate AB which has a width of 2 m. The specific weight of water is 62.4 lb/ft3.

the horizontal component is:

$$f_{H} = P_{1}b(z_{2}-z_{1}) + \frac{1}{2}(z_{2}-z_{1})b(P_{2}-P_{1})$$


$$T_{H} = ggb(Z_{2}-Z_{1})[Z_{1}-Z_{2}-Z_{1}]$$

$$T_{H} = \frac{1}{2}ggb(Z_{2}-Z_{1})[Z_{1}+Z_{2}+Z_{1}]$$

$$T_{H} = \frac{1}{2}ggb(Z_{2}-Z_{1})(Z_{2}+Z_{1})$$

the vertical component is found using:

nethod I

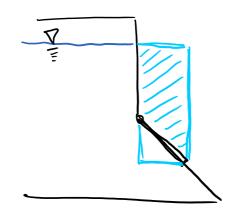
$$F_{V} = f_{3} - f_{4} = W_{2}X - ggV$$

$$F_{V} = P_{2}bX - ggb(\frac{1}{2}X(\frac{2}{2}z - \frac{2}{4}))$$

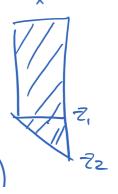
$$F_{V} = ggbX + \frac{1}{2}ggbX(\frac{2}{2}z - \frac{2}{4})$$

$$F_{V} = ggbX(\frac{2}{2}z - \frac{1}{2}(\frac{2}{2}z - \frac{2}{4}))$$

$$F_{V} = \frac{1}{2}ggbX(\frac{2}{2}z - \frac{1}{2}(\frac{2}{2}z - \frac{2}{4}))$$

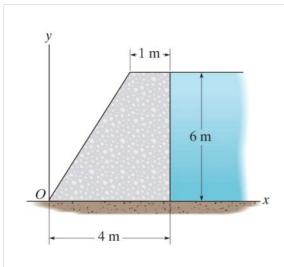

$$F_{V} = \frac{1}{2}ggbX(\frac{2}{2}z - \frac{1}{2}(\frac{2}{2}z - \frac{2}{4}))$$

the magnitude of the resultant force is:

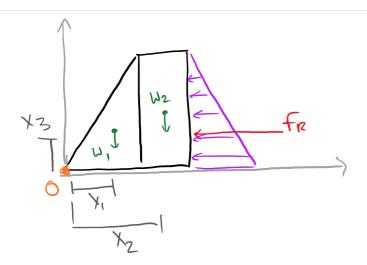

$$\|\vec{f}_{p}\| = \left| \left(\frac{1}{2} sgb(z_{1} + z_{2})(z_{2} - z_{1}) + \left(\frac{1}{2} sgb(z_{1} + z_{2}) \right) \right|$$

$$\|\vec{f}_{p}\| = \frac{1}{2} sgb(z_{1} + z_{2}) \left| \left(z_{2} - z_{1} \right) + x^{2} \right|$$

Method I : use composite Areas!



the horizontal component is the same as above. the vertical component is the weight of "WATER" About the GATE.



$$F_{V} = ggb(xz_{1} + \frac{1}{z} \times (z_{2} - z_{1}))$$

$$F_{V} = \frac{1}{z} ggb \times (z_{1} + z_{2}) \qquad \text{Same AS Above !}$$

The factor of safety for tipping of the concrete dam is defined as the ratio of the stabilizing moment due to the dam's weight divided by the overturning moment about O due to the water pressure. Determine this factor if the concrete has a density of $2500 \, \text{kg/m}^3$.

$$\chi_1 = \frac{2}{3}(3) = 2 \text{ m}$$

$$\chi_2 = 3 + \frac{1}{2} = 3.5 \text{ m}$$

$$\chi_3 = (\frac{1}{3})6 = 2 \text{ m}$$

b is the width given.

Whi = 9,9 V = 9,9 b $(\frac{1}{2}(3)(6)) = 9$,9 b

We = 9,9 V = 9,9 b (1-6) = 6,9 b $F_R = \frac{1}{2} \omega_0 6 = \frac{1}{2} P_0 b 6$ $F_R = \frac{1}{2} (6) b 99 (6) = 18 99 b$

the overturning moment about 0 from the hydrostatic pressure is

the stabilizing moment from the weight of the Concrete DAM

$$M_S = \chi_1 W_1 + \chi_2 W_2$$

the factor of safety is:

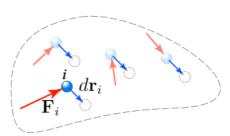
$$\overline{T.9.} = \frac{M_S}{M_{OT}} = \frac{x_1 W_1 + x_2 W_2}{X_3 F} = \frac{x_1 (999b) + x_2 (69.9b)}{x_3 (189.9b)}$$

$$F.S. = \frac{(395)(s_1(3x_1+2x_2))}{(395)(6s_2x_3)}$$

$$F.S. = \frac{S_1}{S_2} \left(\frac{13}{12} \right) = \left(\frac{25\infty}{1000} \right) \left(\frac{13}{12} \right) = \boxed{2.71}$$

Chapter 11: Virtual Work Main goals and learning objectives

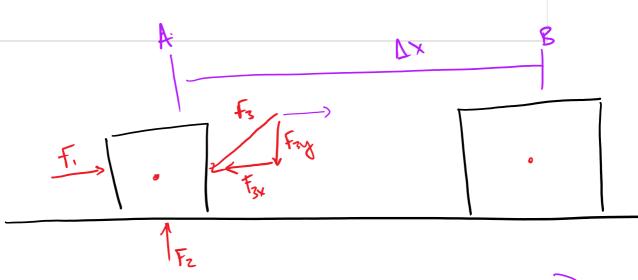
- Introduce the principle of virtual work
- Show how it applies to determining the equilibrium configuration of a series of pin-connected members


Definition of Work

Work of a force

A force does work when it undergoes a displacement in the direction of the line of action.

The work dU produced by the force F when it undergoes a differential displacement dr is given by

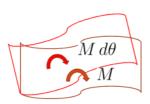

$$dU = \mathbf{F} \cdot d\mathbf{r}$$

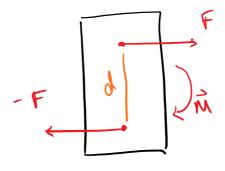
* work is a scalar

Louncy > postneg

Lounits - N. m = Joules

$$W_{1} = F_{1} \cdot \Delta x = F_{1} \Delta x \cos \theta = \frac{F_{1} \Delta x}{\Delta x}$$


$$W_{2} = F_{2} \cdot \Delta x = F_{2} \Delta x \cos \theta = \frac{O}{\Delta x}$$


$$W_{3} = F_{3} \cdot \Delta x = F_{3} \Delta x \cos \theta = -F_{3x} \Delta x$$

$$Nece$$

Definition of Work

Work of a couple $dU = M\mathbf{k} \partial d\theta \mathbf{k} = M d\theta$

M = vector

only rotation

$$d\theta$$
 $m = dF$

clu=Ndt -> Scalar

long-> Pos/neg

dxF=N·m Gunits > N·m = Joule

M, pos work

Negr

J M,