To do ...

- Quiz 7 next week
- WA 4 due **TODAY**
- HW 25 ME due **Sat**
- HW 24 PL due **Tues**

Fluids

Pascal's law: A fluid at rest creates a pressure *p* at a point that is the *same* in *all* directions

Pressure
$$P = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A} = \frac{dF}{dA} \qquad \frac{\text{force}}{\text{AreA}} \to \frac{\mathcal{N}}{M^2} \to \text{Pascel}$$

Incompressible: An incompressible fluid is one for which the mass density ρ is independent of the pressure p. Liquids are generally considered incompressible. Gases are compressible, but may be approximated as incompressible if the pressure variations are relatively small.

$$\overline{z}F_y=0$$

$$pdxdz-(p+\frac{\partial P}{\partial y}dy)dxdz=0$$

$$\overline{2}F_{z}=0$$

$$P dxdy - (Pt \frac{\partial P}{\partial t} dz) dxdy - fgdx dydz = 0$$

$$\frac{\partial P}{\partial x} = C$$

$$\frac{2Fy^{20}}{Pdxdz} - Pdxdz - \frac{\partial P}{\partial y}dydxdz = 0$$

$$\therefore \frac{\partial P}{\partial y} = 0$$

$$\frac{\partial P}{\partial \tau} = -gg$$

$$\frac{dP}{dz} = -fg$$

integrate...

$$\int_{P_1}^{P_2} dP = -\int_{Z_1}^{Z_2} \int_{Z_1}^{Z_2} dA$$

$$P_2 - P_1 = - fg(z_2 - z_1)$$

Recap: Fluid Pressure

For an incompressible fluid at rest with mass density, the pressure varies linearly with depth z, and is constant along any horizontal plane (since h is constant):

The tank is filled with water to a depth of d = 4 m. Determine the resultant force the water exerts on side A of the tank. ($\rho = 1000 \text{ kg/m}^3$)

At sine A:

the FBD of SiDE A:

$$\overline{f_A} = \frac{1}{2} dw_1 = \frac{1}{2} dP_1 a = \frac{1}{2} dg da$$

$$\overline{f_A} = \frac{1}{2} gg a d^2 = 157 kN$$

The tank is filled with water to a depth of d = 4 m. Determine the resultant force the water exerts on side B of the tank. ($\rho = 1000 \text{ kg/m}^3$)

At side B:

$$W_2 = P_2 b$$

$$F_{B} = \frac{1}{2}dy_{2} = \frac{1}{2}dP_{2}b$$

$$F_{B} = \frac{1}{2}dggdb$$

$$F_{B} = \frac{1}{2}ggbd^{2}$$

F_B = 235 kN

If the tank is filled with oil instead, what depth d should it reach so that it creates the same resultant forces on side A. ($\rho = 900 \text{ kg/m}^3$)

Forces on side A:

$$\overline{T_A} = \frac{1}{2} ggad^2$$

water:

1 11

s gad

$$\int_{\omega} d\omega^2 = \int_{0}^{2} d_{0}^2$$

$$d_o = \sqrt{\frac{\beta_\omega}{\beta_o}} d\omega$$

UB=PBD

Determine the magnitude and location of the resultant hydrostatic force acting on the submerged rectangular plate *AB*. The plate has width 1.5m. The density of the water is 1000 kg/m³

First calculate Resultant force:

$$f_R = F_{R_1} + f_{R_2} = ghh \left(\frac{z_A + z_B}{z}\right) = 154.5 \text{ kN}$$

Sum the moments about B:

$$x_1 f_1 - x_2 f_2 - (4_M) D_x = 0$$
 (9 un Known)

Solve for locations and magnitude of resultant forces:

resultant forces:

$$F_{1} = \frac{1}{2} h_{1} W_{1} = \frac{1}{2} h_{1} P_{1} b$$

$$F_{1} = \frac{1}{2} g g b h_{1}^{2}$$

$$F_{2} = \frac{1}{2} h_{2} U_{2} = \frac{1}{2} h_{2} P_{2} b$$

$$F_{2} = \frac{1}{2} g g b h_{2}^{2}$$

use Moment egn to solve:

$$(1+\frac{2}{3}h_{1})^{2} + \frac{2}{3}h_{2}(\frac{1}{2}+\frac{2}{3}h_{2})^{2} - 4D_{x} = 0$$

$$\frac{1}{2}gb\left[h_{1}^{2}(1+\frac{2}{3}h_{1}) - h_{2}^{2}(2+\frac{2}{3}h_{2})\right] = 4D_{x}$$

$$D_x = 101 \text{ kM}$$

now sum forces:

Cx = 46.6 kN

Fluid Pressure

For an incompressible fluid at rest with mass density , the pressure varies linearly with depth \boldsymbol{z}

Liquid surface $w_1 = bp_1$ $w_2 = bp_2$ p L

Reduce to 20

Separate into components.

$$F_{R} = \sqrt{f_{x}^{2} + F_{z}^{2}}$$
 $F_{R} = \sqrt{(f_{x} + f_{x_{2}})^{2} + (f_{z} + W)^{2}}$

Fluid Pressure For an incompressible fluid at rest with mass density , the pressure varies linearly with depth zLiquid surface Liquid surface $w_1 = bp_1$ reduce to 20. UA = PA b = 87A b WA=PAD 7A ZB

Q: what is F on the other SiDE?