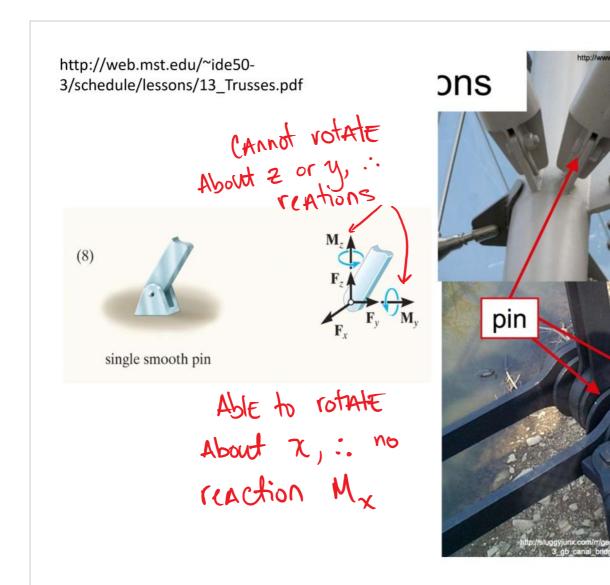


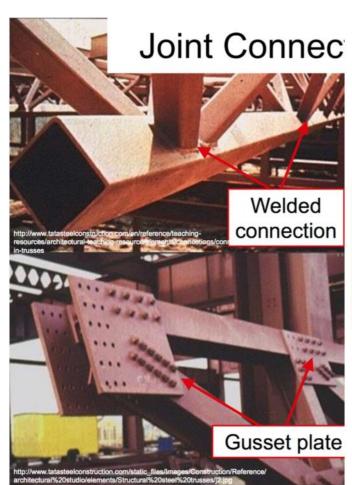
with 2D, only worried about
$$\overrightarrow{M} = [0,0,1]$$

Zfx = Zfy = Zfz = 0

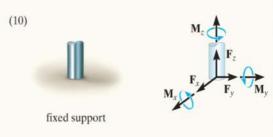
 $ZM_x = ZM_y = ZM_z = 0$

6 equations, CAN Solve for 6 unknowns!

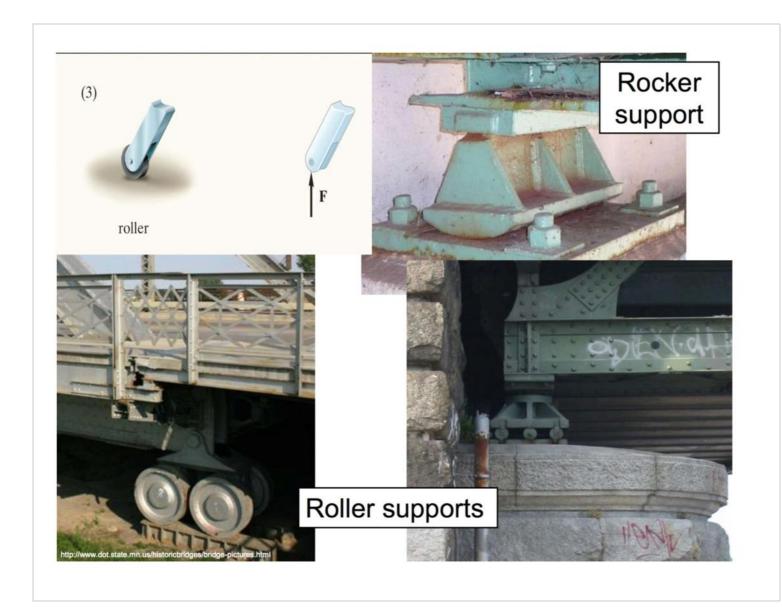


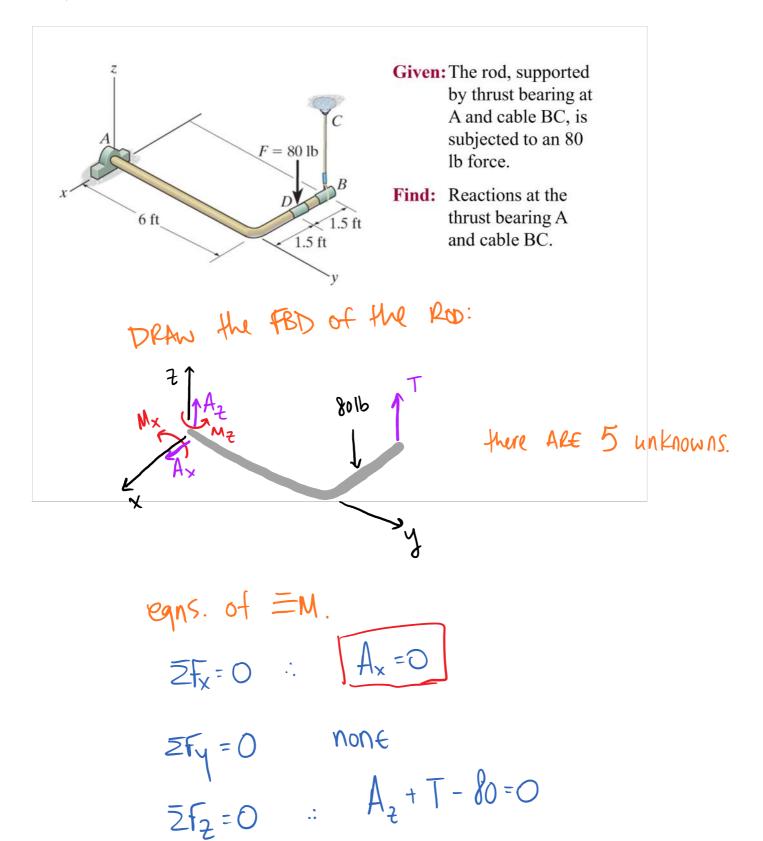

Types of Connection	Reaction	Number of Unknowns
cable	F	One unknown. The reaction is a force which acts awa from the member in the known direction of the cable.
smooth surface support	F	One unknown. The reaction is a force which act perpendicular to the surface at the point of contact.
(3)	F	One unknown. The reaction is a force which act perpendicular to the surface at the point of contact.

Types of Connection	Reaction	Number of Unknowns
ball and socket	\mathbf{F}_{x} \mathbf{F}_{y}	Three unknowns. The reactions are three rectangular force components.


TABLE 5–2 Continued		
Types of Connection	Reaction	Number of Unknowns
single journal bearing with square shaft	M_z F_z M_y	Five unknowns. The reactions are two force and three couple-moment components. <i>Note</i> : The couple moment are generally not applied if the body is supported elsewhere. See the examples.
(7) single thrust bearing	\mathbf{M}_{z} \mathbf{F}_{y} \mathbf{F}_{z} \mathbf{F}_{x}	Five unknowns. The reactions are three force and two couple-moment components. <i>Note</i> : The couple moment are generally not applied if the body is supported elsewhere. See the examples.
(8) single smooth pin	F_z F_y M_y	Five unknowns. The reactions are three force and two couple-moment components. <i>Note</i> : The couple moment are generally not applied if the body is supported elsewhere. See the examples.

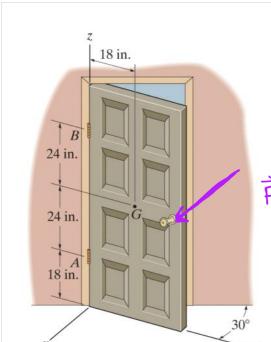
Types of Connection	Reaction M _z	Number of Unknowns
single hinge	\mathbf{F}_{x} \mathbf{F}_{x}	Five unknowns. The reactions are three force and two couple-moment components. <i>Note</i> : The couple moments are generally not applied if the body is supported elsewhere. See the examples.
)) 	\mathbf{M}_z	Six unknowns. The reactions are three force and three couple-moment components.




http://web.mst.edu/~ide50-3/schedule/lessons/13_Trusses.pdf

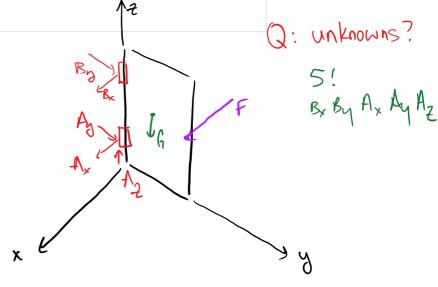
translation or Rotation!

.: 6 reaction!



$$2M_y = 0$$
 : $-80(1.5) + T(3) = 0$
 $T = \frac{80(1.5)}{3} = \frac{40 \text{ lb}}{3}$

$$\geq M_x = 0$$
: $M_{A_x} + T(6) - 80(6) = 0$


$$\geq M_2 = 0$$
 .: $M_{A_2} = 0$

The 100 lb door has its center of gravity at G. Determine the components of reaction at hinges A and B if hinge B resists only forces in the x and y directions and A resists forces in the x, y, z directions.

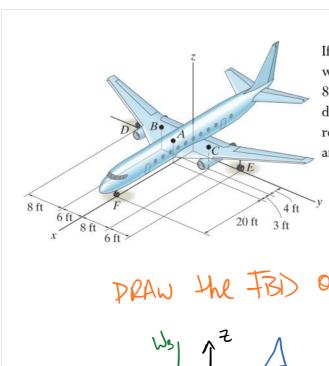
Force At handle. F

- identify support reactions DRAW FBD, coordinates.

Sum the forces And moments.

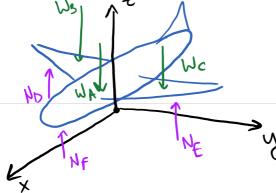
$$\overline{2}f_x: A_x + B_x + F = 0$$

$$A_y + B_y = 0$$


$$\overline{z}f_{y}$$
: $A_{y} + B_{y} = 0$

$$A_2 - G = 0 \qquad \Rightarrow \qquad A_2 = G$$

$$2M_{\chi}$$
: $-B_{\gamma}(48) - (100)(18) = 0$
 $B_{\gamma} = -(100)(18) = -37.5 \text{ lb}$


$$\overline{Z}M_{y}': B_{x}(48) + F(24) = 0$$

$$B_{x} = -\frac{F(24)}{48} = \boxed{-\frac{F}{Z}}$$

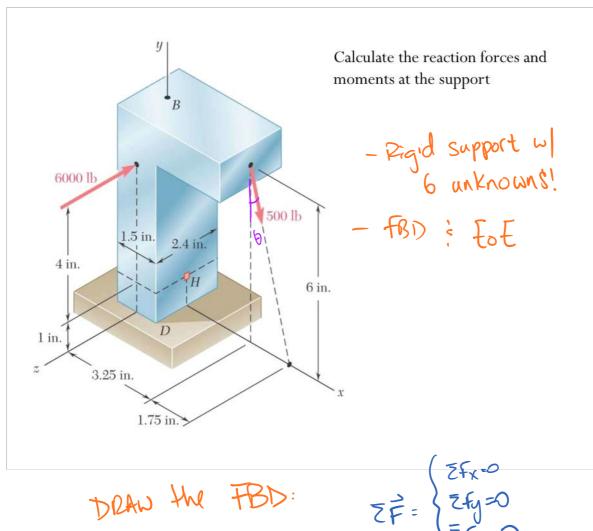
If these components have weights $W_A = 45000$ lb, $W_B =$ 8000 lb and $W_C = 6000$ lb, determine the normal reactions of the wheels D, E, and F on the ground.

DRAW the FBD of the plane:

3 unknowns.

Egns. of =M.

ZFx=0 none


$$-N_{F}(27) + W_{A}(7) + W_{B}(4) + W_{C}(4) = O$$

$$N_{F} = W_{A}(7) + 4(W_{S} + W_{C}) = 13.7 \text{ Kip}$$

$$27$$

ZM = 0 :

Solve for NE ...

DRAW HAR TBD:
$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \\ \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} + \sqrt{2} \end{cases}$$

$$\overline{z} = \begin{cases} \overline{z} +$$

$$0 = 4 \text{An} \left(\frac{1.75}{6} \right) = 16.3^{\circ}$$

egns. of $\equiv M$:

$$ZM_{x}$$
: $M_{0x} - (5)6000 = 0$

$$\overline{Z}_{M_2}$$
: $M_{22} - (3.25)_{500} G_{50} - (6)_{500} S_{10} = 0$

Solve system of aquations!!